
Ad: Study discontinuous analysis, an enhanced
calculus in which every function is both differen-
tiable and integrable.
Ad: World-best general purpose programming lan-
guage. You won’t like Python anymore.
Ad: Donate for science.

1

https://teachsector.com/limit/
https://teachsector.com/limit/
https://teachsector.com/dforpython/
https://teachsector.com/dforpython/
https://science-dao.vporton.name




Algebraic General
Topology.

Book 3: Algebra.
Edition 3

Victor Porton
Email address: porton@narod.ru
URL: http://math.portonvictor.org

mailto:porton@narod.ru
http://math.portonvictor.org


2010 Mathematics Subject Classification. 06F05,
06F99, 08A99, 20M30, 20M99, 54J05, 54A05,
54D99, 54E05, 54E15, 54E17, 54E99, 51F99,

54E25, 30L99, 54E35

Key words and phrases. algebraic general
topology, quasi-uniform spaces, generalizations of

proximity spaces, generalizations of nearness
spaces, generalizations of uniform spaces, ordered
semigroups, ordered monoids, abstract algebra,

universal algebra



5

Abstract. I define space as an element
of an ordered semigroup action, that is a
semigroup action conforming to a partial
order. Topological spaces, uniform spaces,
proximity spaces, (directed) graphs, met-
ric spaces, etc. all are spaces. It can be
further generalized to ordered precategory
actions (that I call interspaces). I build
basic general topology (continuity, limit,
openness, closedness, hausdorffness, com-
pactness, etc.) in an arbitrary space. Now
general topology is an algebraic theory.

For example, my generalized continu-
ous function are: continuous function for
topological spaces, proximally continuous
functions for proximity spaces, uniformly
continuous functions for uniform spaces,
contractions for metric spaces, discretely
continuous functions for (directed) graphs.

Was a spell laid onto Earth mathe-
maticians not to find the most important
structure in general topology until 2019?
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CONTENTS 9

This is a draft.
It is a continuation of [1].
You can read this text without any knowledge

of algebraic general topology ([1]). But to have
some examples of how to apply this theory, you
need to know what funcoids and reloids are and
how funcoids are related with topological spaces.





CHAPTER 1

Introduction

I will show that most of the topology can be
formulated in an ordered semigroup (or, more gen-
erally, an ordered precategory).

I will make this part of the book mostly self-
contained, for example, reminding definitions of
funcoids.
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CHAPTER 2

Prerequisites

You need to know about semigroups, ordered
semigroups, semigroup actions, before reading fur-
ther. If in doubt, consult Wikipedia.

Filtrators are pairs of a poset and its subset
(with the induced order). An important example
of filtrator is the set of filters on some poset to-
gether with the subset of principal filters. (Note
that I order filters reversely to the set inclusion
relation: So for filters I have a ⊑ b ⇔ a ⊇ b.)

I will denote meet and join on a poset corre-
spondingly as ⊓ and ⊔.

I call two elements a and b intersecting (a ̸≍
b) when there is a non-least element c such that
c ⊑ a ∧ c ⊑ b. For meet-semilattices with meet
operation ⊓ this condition is equivalent to a ⊓ b
being non-least element.

I call two elements a and b joining (a ≡ b)
when there is no non-greatest element c such that
c ⊒ a ∧ c ⊒ b. For join-semilattices with meet

13



14 2. PREREQUISITES

operation ⊔ this condition is equivalent to a ⊔ b
being the greatest element.

I denote ⟨f⟩∗X =
{

fx
x∈X

}
.



CHAPTER 3

Basic examples

A topological space is determined by its closure
operator.

Consider the semigroup formed by composing
together any finite number of topological closure
operators (on some fixed “universal” set).

This semigroup can be considered as its own
action.

So every topological space is an element of this
semigroup that is associated with an action.

The set, on which these actions act, is the set
of subsets of our universal set. The set of subsets
of a set is a partially ordered set.

So we have topological space defined by actions
of an ordered semigroup.

Below I will define a space as an ordered semi-
group action element.

This includes topological spaces, uniform
spaces, proximity spaces, (directed) graphs, metric
spaces, semigroups of operators, etc.

15



16 3. BASIC EXAMPLES

Moreover we can consider the semigroup of all
functions P℧ → P℧ for some set ℧ (the set
of “points” of our space). Above we showed that
topological spaces correspond to elements of this
semigroup. Functions on ℧ also can be considered
as elements of this semigroup (replace every func-
tion with its “image of a set” function). Then we
have an ordered semigroup action containing both
topospaces and functions. As it was considered
above, we can describe a function f being contin-
uous from a space µ to a space ν by the formula
f ◦µ ⊑ ν ◦f . See, it’s an instance of algebraic gen-
eral topology: a topological concept was described
by an algebraic formula, without any quantifiers.



CHAPTER 4

Precategories

Definition 2111. A precategory is a directed
multigraph together with a partial binary opera-
tion ◦ on the set M of edges (called the set of
morphisms in the context of precategories) such
that g ◦ f is defined iff Dst f = Src g (for every
morphisms f and g) such that

1◦. Src(g ◦ f) = Src f and Dst(g ◦ f) = Dst g
whenever the composition g ◦ f of mor-
phisms f and g is defined.

2◦. (h ◦ g) ◦ f = h ◦ (g ◦ f) whenever compo-
sitions in this equation are defined.

Definition 2112. A prefunctor is a pair of a
function from the set of objects of one precategory
to the set of objects of another precategory and
a function from the set of morphisms of one pre-
category to the set of morphisms of that another
precategory (these two functions are denoted by
the same letter such as ϕ) conforming to the ax-
ioms:

17



18 4. PRECATEGORIES

1◦. ϕ(f) : ϕ(Src f) → ϕ(Dst f) for every mor-
phism f of the first precategory;

2◦. ϕ(g◦f) = ϕ(g)◦ϕ(f) for every composable
morphisms f , g of the first precategory.

Note 2113. A semigroup is essentially a spe-
cial case of a precategory (with only one object)
and semigroup homomorphism is a prefunctor.



CHAPTER 5

Ordered precategories

Definition 2114. Ordered precategory (or
poprecategory) is a precategory together with an
order on the set of morphisms conforming to the
equality:

x0 ⊑ x1 ∧ y0 ⊑ y1 ⇒ y0 ◦ x0 ⊑ y1 ◦ x1.

19





CHAPTER 6

Ordered semigroups

Definition 2115. Ordered semigroup (or
posemigroup) is a set together with binary oper-
ation ◦ and binary relation ⊑ on it, conforming
both to semigroup axioms and partial order ax-
ioms and:

x0 ⊑ x1 ∧ y0 ⊑ y1 ⇒ y0 ◦ x0 ⊑ y1 ◦ x1.

Essentially, a posemigroup is just an ordered
precategory with just one object.

In this book I will call elements of an or-
dered semigroup spaces, because they generalize
such things as topological spaces, (quasi)proximity
spaces, (quasi)uniform spaces, (directed) graphs,
(quasi)metric spaces.

As I shown above, functions (and more gen-
erally binary relations) can also be considered as
spaces.

21





CHAPTER 7

Precategory actions

Definition 2116. Precategory action is a pre-
functor from a precategory to the category Set.

23





CHAPTER 8

Ordered precategory actions

The category Pos is the category whose objects
are (small) posets and whose morphisms are order
homomorphisms.

Definition 2117. Semiordered precategory
action on a is a precategory action ⟨⟩ to the cate-
gory Pos of all partially ordered sets, such that

1◦. a ⊑ b ⇒ ⟨a⟩x ⊑ ⟨b⟩x for all a, b ∈ S,
x ∈ A.

I call morphisms of such a precategory as semi-
interspaces.1

Definition 2118. Ordered precategory action
on a is a precategory action ⟨⟩ to the category Pos
of all partially ordered sets, such that

1◦. a ⊑ b ⇒ ⟨a⟩x ⊑ ⟨b⟩x for all a, b ∈ S,
x ∈ A;

1The prefix inter- is supposed to mean that the mor-
phisms may have the source different that the destination.

25



26 8. ORDERED PRECATEGORY ACTIONS

2◦. x ⊑ y ⇒ ⟨a⟩x ⊑ ⟨a⟩y for all a ∈ S, x, y ∈
A.

In other words, an ordered precategory action is
a (not necessarily strictly) increasing precategory
action (we consider transformations of this action
to be ordered pointwise, that is by the product
order).

I call morphisms of such a precategory as in-
terspaces.

Note that this “inducting” is an ordered semi-
group homomorphism.



CHAPTER 9

Ordered semigroup actions

Definition 2119. Curried semiordered semi-
group action on a poset A for an ordered semi-
group S is a function ⟨⟩ : S → (A → A) such
that

1◦. ⟨b ◦ a⟩x = ⟨b⟩⟨a⟩x for all a, b ∈ S, x ∈ A;
x, y ∈ A;

2◦. a ⊑ b ⇒ ⟨a⟩x ⊑ ⟨b⟩x for all a, b ∈ S,
x ∈ A.

I call elements of such an action semispaces.

Definition 2120. Curried ordered semigroup
action on a poset A for an ordered semigroup S is
a function ⟨⟩ : S → (A → A) such that

1◦. ⟨b ◦ a⟩x = ⟨b⟩⟨a⟩x for all a, b ∈ S, x ∈ A;
x, y ∈ A;

2◦. a ⊑ b ⇒ ⟨a⟩x ⊑ ⟨b⟩x for all a, b ∈ S,
x ∈ A;

3◦. x ⊑ y ⇒ ⟨a⟩x ⊑ ⟨a⟩y for all a ∈ S.
I call elements of such an action spaces.

27



28 9. ORDERED SEMIGROUP ACTIONS

Remark 2121. Google search for “"ordered
semigroup action"” showed nothing. Was a spell
laid onto Earth mathematicians not to find the
most important structure in general topology?

Essentially, an ordered semigroup action is an
ordered precategory action with just one object.

We can order actions componentwise. Then
the above axioms simplify to:

1◦. ⟨b ◦ a⟩ = ⟨b⟩ ◦ ⟨a⟩ for all a, b ∈ S;
2◦. ⟨⟩ is a (not necessarily strictly) increasing;
3◦. ⟨a⟩ is a (not necessarily strictly) increas-

ing, for every space a.

Definition 2122. A functional ordered precat-
egory action is such an ordered precategory action
that ⟨a⟩ = a for every space a.

Theorem 2123. Each ordered precategory ac-
tion induces as functional ordered precategory ac-
tion, whose morphisms are the same a of the orig-
inal one but with objects being posets, spaces are
the actions of the original precategory, the compo-
sition operation is function composition, and order
of spaces is the product order.

Proof. That it’s a precategory is obvious.
The partial order is the same as the original. It
remains to prove the remaining axioms.
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For our precategory

⟨b ◦ a⟩ = b ◦ a = ⟨b⟩ ◦ ⟨a⟩.

⟨⟩ is increasing because it’s the identity func-
tion.

⟨a⟩ is the same as one of the original ordered
precategory action and thus is increasing. □

Having a ordered precategory action and a ho-
momorphism to its ordered precategory, we can
define in an obvious way a new ordered precate-
gory action. The following is an example of this
construction (here (RLD)in is a functor of ordered
precategories).

Funcoids form an ordered precategory with ac-
tion ⟨⟩. Reloids form an ordered precategory with
action a 7→ ⟨(RLD)ina⟩. As we know from the
above, funcoids are a generalization of topologi-
cal spaces, proximity spaces, and directed graphs
(“discrete spaces”), reloids is a generalization of
uniform spaces and directed graphs. Funcoid is
determined by its action. So most of the custom-
ary general topology can be described in terms of
ordered precategory actions (or ordered semigroup
actions, see below).

Remember that elements of our posets of ob-
jects may be such things as sets or more generally
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filters, they may be not just points. So our topo-
logical construction is “pointfree” (we may con-
sider sets or filters, not points).

This part of the book is mainly about this
topic: describing general topology in terms of or-
dered precategory actions. Above are the new ax-
ioms for general topology. No topological spaces
here.

Semiordered precategory action is ordered by
elements when

a ⊑ b ⇐ ⟨a⟩ ⊑ ⟨b⟩
that is when

a ⊑ b ⇐ ∀x : ⟨a⟩x ⊑ ⟨b⟩x.

Obviously, in this case ⟨⟩ is a faithful functor.
So our ordered precategory action is essentially
functional (functional, up to a faithful functor).



CHAPTER 10

Ordered dagger categories and
ordered semigroups with involution

Definition 2124. Dagger precategory is a pre-
category together with the operation a 7→ a†

(called involution or dagger) such that:
1◦. a†† = a;
2◦. (b ◦ a)† = a† ◦ b†.

For an ordered dagger precategory we will addi-
tionally require a ⊑ b ⇒ a† ⊑ b† (and consequently
a ⊑ b ⇔ a† ⊑ b†).

Definition 2125. Semigroup with involution
is a dagger precategory with just one object.

For an ordered semigroup with involution or or-
dered dagger precategory we will additionally re-
quire a ⊑ b ⇒ a† ⊑ b† (and consequently a ⊑ b ⇔
a† ⊑ b†).

31





CHAPTER 11

Topological properties

Now we have a formalism to describe many
topological properties (following the idea above in
this book):

Continuity is described by the formulas f ◦a ⊑
a ◦ f , f ◦ a ◦ f † ⊑ a, a ⊑ f † ◦ a ◦ f .

Convergence of a function f from an endomor-
phism (space) µ to an endomorphism (space) ν at
filter x to a set or filter y is described by the for-
mula ⟨f⟩⟨µ⟩x ⊑ ⟨ν⟩y.

Generalized limit of an arbitrary interspace f
(for example, of an arbitrary (possibly discontinu-
ous) function), see [2], is described by the formula

xlim f =
{

ν ◦ f ◦ r

r ∈ G

}
,

where G is a suitable group (consider for example
the group of all translations of a vector space).

Neighborhood of element x is such a y that
⟨a⟩x ⊑ y. Interior of x (if it exists) if the join
of all y such that x is a neighborhood of x.

33



34 11. TOPOLOGICAL PROPERTIES

An element x is closed regarding a iff ⟨a⟩x ⊑ x.
x is open iff x is closed regarding ⟨a⟩†.

To define compactness1 we additionally need
the structure of filtrator (A,Z) on our poset. Then
it is space a is directly compact iff
∀x ∈ A : (x is non-least ⇒ Cor⟨a⟩x is non-least);
a is reversely compact iff a† is directly compact;
a is compact iff it is both directly and reversely
compact.

Denote c the element of the precategory Set
such that ⟨c⟩ = Cor, then the above can be rewrit-
ten
∀x ∈ A : (x is non-least ⇒ ⟨c ◦ a⟩x is non-least);

what is equivalent to 1 ⊑ c ◦ a.
However, we can define compactness without

specifying Z as we can take Z to be the center
(the set of all its complemented elements) of the
poset A.

The same reasoning applies to Cor′ in place
of Cor.

It seem we cannot define total boundness purely
in terms of ordered semigroups, because it is a

1That this coincides with the traditional definition of
compactness of topological spaces, follows from the well
known fact that a topological space is compact iff each
proper filter on it has an adherent point.
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property of reloids and reloid is not determined
by its action.





CHAPTER 12

A relation

Every ordered precategory action ⟨⟩ defines a
relation R: x [a] y ⇔ y ̸≍ ⟨a⟩x.

If [a]†=[a]−1 for every a, we call the action ⟨⟩
on an dagger precategory intersection-symmetric.
In this case our action defines a pointfree funcoid.

A space is connected iff x ≡ y ⇒ x [a] y.
We can define open and closed functions.

37





CHAPTER 13

Further axioms

Further possible axioms for an ordered semi-
group action with binary joins:

• ⟨f⟩(x ⊔ y) = ⟨f⟩x ⊔ ⟨f⟩y;
• ⟨f ⊔ g⟩x = ⟨f⟩x ⊔ ⟨g⟩x.

FiXme: Need to generalize for a wider class of
posets.

39





CHAPTER 14

Restricted identity transformations

Restricted identity transformation idp, where p
is an element of a poset, is the (generally, partially
defined) transformation x 7→ x ⊓ p.

Obvious 2126. idq ◦ idp = idp⊓q if p and q are
elements of some poset for which binary meet is
defined.

Proposition 2127. p ̸= q ⇒ idp ̸= idq.

Proof. idp p = p ̸= q = idq q. □

Ordered precategory action with identities is an
ordered precategory S action ⟨⟩ together with a
function p 7→ idp ∈ S such that

1◦. ⟨idp⟩ = idp whenever this equality is de-
fined;

2◦. idp ◦x ⊑ x;
3◦. x ◦ idp ⊑ x.

41



42 14. RESTRICTED IDENTITY TRANSFORMATIONS

(I abuse the notation idp for both interspaces and
for transformations; this won’t lead to inconsis-
tencies, because as proved above this mapping is
faithful on restricted identities.)

Obvious 2128. For every ordered precategory
action with identities, the identity transformations
are entirely defined on their domains.

From injectivity it follows idp⊓q = idp ◦ idq.
Restriction of an interspace a to element x is

a|x = a ◦ idx.
Square restriction (a generalization of restric-

tion of a topological space, metric space, etc.) of
a space a to element x is idx ◦a ◦ idx.



CHAPTER 15

Binary product of poset elements

Definition 2129. I call an ordered precate-
gory action correctly bounded when the set of inter-
spaces between two fixed objects is bounded and:

1◦. ⟨⊥⟩x = ⊥ for every poset element x;

2◦. ⟨⊤⟩x =
{

⊤ if x ̸= ⊥,
⊥ if x = ⊥.

Binary product in an ordered semigroup action
having a greatest element ⊤ is defined as p × q =
idq ◦⊤ ◦ idp.

Theorem 2130. If our action is correctly
bounded, then

⟨p × q⟩x =
{

q if x ̸≍ p,
⊥ if x ≍ p.

43



44 15. BINARY PRODUCT OF POSET ELEMENTS

Proof.

⟨p × q⟩x =
⟨idq ◦⊤ ◦ idp⟩x =
⟨idq⟩⟨⊤⟩⟨idp⟩x =
q ⊓ ⟨⊤⟩(p ⊓ x) ={

q if x ̸≍ p,
⊥ if x ≍ p.

□

Theorem 2131. If our action is correctly
bounded, then

x [p × q] y ⇔ x ̸≍ p ∧ y ̸≍ q.

Proof.

x [p × q] y ⇔ y ̸≍ ⟨p × q⟩x ⇔

y ̸≍
{

q if x ̸≍ p,
⊥ if x ≍ p.

⇔

x ̸≍ p ∧ y ̸≍ q.

□



CHAPTER 16

Separable spaces

T1-space a when x R Cor a y for every x ≍ y.
T2-space or Hausdorff is such a space f that

f−1 ◦ f is T1-separable.
T0-space is such a space f that f−1 ⊓ f is T1-

separable.
T4-space is such a space f that

f ◦ f−1 ◦ f ◦ f−1 ⊑ f ◦ f−1.

45





CHAPTER 17

Distributive ordered semigroup
actions

We can define (product) order of ordered pre-
category actions. For functional ordered precate-
gory actions composition is defined. So we have
one more “level” of ordered precategories. By the
way, it can be continued indefinitely building new
and new levels of such ordered precategories.

More generally we could consider ordered pre-
category functors (or specifically, ordered semi-
group homomorphisms). Examples of such homo-
morphisms are ⟨⟩, (FCD), (RLD)in.

Pointfree funcoids (and consequently funcoids)
are an ordered precategory action. Reloids are also
an ordered precategory action.
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CHAPTER 18

Complete spaces and completion of
spaces

A space a is complete when ⟨a⟩ dS =

d⟨⟨a⟩⟩∗S whenever both dS and d⟨⟨a⟩⟩∗S are
defined.

Definition 2132. Completion of an interspace
is its core part (see above for a definition of core
part) on the filtrator of interspace and complete
interspace.

Note 2133. Apparently, not every space has a
completion.

Note 2134. It is unrelated with Cachy-
completion.
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CHAPTER 19

Kuratowski spaces

Definition 2135. Kuratowski space is a com-
plete idempotent (a ◦ a = a) space.

Kuratowski spaces are a generalization of topo-
logical spaces.
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CHAPTER 20

Metric spaces

Let us call most general nonnegative real met-
rics (MGNRM) the precategory of all extended
nonnegative (R+ ∪{+∞}) real functions (on some
fixed set) of two arguments and the “composition”
operation

(σ ◦ ρ)(x, z) = inf
y∈℧

(ρ(x, y) + σ(z, y))

and most general nonnegative real metric an ele-
ment of this precategory.

Remark 2136. The infimum exists because
it’s nonnegative.

We need to prove it’s an associative operation.
53



54 20. METRIC SPACES

Proof.

(τ ◦ (σ ◦ ρ))(x, z) =
inf

y1∈℧
((σ ◦ ρ)(x, y1) + τ(y1, z)) =

inf
y1∈℧

( inf
y0∈℧

(ρ(x, y0) + σ(y0, y1)) + τ(y1, z)) =

inf
y0,y1∈℧

(ρ(x, y0) + σ(y0, y1) + τ(y1, z)).

Similarly

((τ ◦ σ) ◦ ρ)(x, z) =
inf

y0,y1∈℧
(ρ(x, y0) + σ(y0, y1) + τ(y1, z)).

Thus τ ◦ (σ ◦ ρ) = (τ ◦ σ) ◦ ρ. □

Definition 2137. We extend MGNRM to the
set P℧ by the formula:

ρ(X, Y ) = inf
x∈X,y∈Y

ρ(x, y).

Remark 2138. This is well-defined thanks to
MGNRM being nonnegative and allowing the infi-
nite value.

Proposition 2139.
1◦. ρ(I ∪ J, Y ) = min{ρ(I, Y ), ρ(J, Y )};
2◦. ρ(X, I ∪ J) = min{ρ(X, I), ρ(Y, J)}.
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Proof. We’ll prove the first as the second is
similar:

ρ(I ∪ J, Y ) =
inf

x∈I∪J,y∈Y
ρ(x, y) =

min
{

inf
x∈I,y∈Y

ρ(x, y), inf
x∈J,y∈Y

ρ(x, y)
}

=

min{ρ(I, Y ), ρ(J, Y )}.

□

Let a be a most general metric. I denote ∆a

the funcoid determined by the formula

X [∆a]∗ Y ⇔ ρa(X, Y ) = 0.

(If a is a metric, then it’s the proximity induced
by it.)

Let’s prove it really defines a funcoid:

Proof. Not ∅ [∆a]∗ Y and not X [∆a]∗ ∅ be-
cause

ρa(∅, Y ) = ρa(X, ∅) = +∞.

By symmetry, it remains to prove

(I ∪ J) [∆a]∗ Y ⇔ I [∆a]∗ Y ∨ J [∆a]∗ Y.
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Really,

(I ∪ J) [∆a]∗ Y ⇔
ρa(I ∪ J, Y ) = 0 ⇔

min{ρa(I, Y ), ρa(J, Y )} = 0 ⇔
ρa(I, Y ) = 0 ∨ ρa(J, Y ) = 0 ⇔

I [∆a]∗ Y ∨ J [∆a]∗ Y.

□

Obvious 2140.

X [∆a]∗ Y ⇔
∀ϵ > 0∃x ∈ X, y ∈ Y : |ρa(x, y)| < ϵ.

Theorem 2141.

⟨∆a⟩X =
l

ϵ>0

⋃
x∈X

B(x, ϵ)

(B(x, ϵ) is the open ball of the radius ϵ centered
at x).

Proof.

Y ̸≍ ⟨∆a⟩X ⇔ X [∆a] Y ⇔
∀ϵ > 0∃x ∈ X, y ∈ Y : ρa(x, y) < ϵ.
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Y ̸≍
l

ϵ>0

⋃
x∈X

Ba(x, ϵ) ⇔

∀ϵ > 0 : Y ̸≍
⋃

x∈X

Ba(x, ϵ) ⇔

∀ϵ > 0∃x ∈ X : Y ̸≍ Ba(x, ϵ) ⇔
∀ϵ > 0∃x ∈ X, y ∈ Y : ρa(x, y) < ϵ.

□

MGNRM are also interspaces: Define the order
on metric spaces by the formula

ρ ⊑ σ ⇔ ∀x, y : ρ(x, y) ⊒ σ(x, y).

Define the action for a metric space a as the action
⟨∆a⟩ of its induced proximity ∆a (see above for a
definition of proximity and more generally funcoid
actions ⟨⟩) and composition of metrics ρ, σ by the
formula:

(σ ◦ ρ)(x, z) = inf
y∈℧

(ρ(x, y) + σ(z, y)),

where ℧ is the set of points of our metric space.

Lemma 2142. ∆b◦a = ∆b ◦ ∆a.
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Proof. Let X, Y be arbitrary sets on a metric
space.

Z ̸≍ ⟨∆b◦a⟩X ⇔
∀ϵ > 0∃x ∈ X, z ∈ Z :

inf
y∈℧

(ρa(x, y) + ρb(y, z)) < ϵ ⇔

∀ϵ > 0∃x ∈ X, y ∈ ℧, z ∈ Z :
ρa(x, y) + ρb(y, z) < ϵ ⇔

∀ϵ > 0∃x ∈ X, y ∈ ℧, z ∈ Z :
(ρa(x, y) < ϵ ∧ ρb(y, z) < ϵ)

Z ̸≍ ⟨∆b ◦ ∆a⟩X ⇔ Z ̸≍ ⟨∆b⟩⟨∆a⟩X ⇔〈
∆−1

b

〉
Z ̸≍ ⟨∆a⟩X ⇔

l

ϵ>0

⋃
x∈X

Ba(x, ϵ) ̸≍
l

ϵ>0

⋃
z∈Z

Bb(z, ϵ) ⇔

∀ϵ > 0 :
⋃

x∈X

Ba(x, ϵ) ̸≍
⋃

z∈Z

Bb(z, ϵ) ⇔

∀ϵ > 0∃x ∈ X, z ∈ Z : Ba(x, ϵ) ̸≍ Bb(z, ϵ) ⇔
∀ϵ > 0∃x ∈ X, z ∈ Z, y ∈ ℧ :

(ρa(x, z) < ϵ ∧ ρb(z, y) < ϵ).

So, Z ̸≍ ⟨∆b◦a⟩X ⇔ Z ̸≍ ⟨∆b ◦ ∆a⟩X. □

Let’s prove it’s really an ordered precategory
action:
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Proof.
• It is an ordered precategory, because

⟨a⟩x = ⟨∆a⟩x ⊑ ⟨∆a⟩y = ⟨a⟩y for filters
x ⊑ y.

•

⟨b ◦ a⟩ = ⟨∆b◦a⟩ =
⟨∆b ◦ ∆a⟩ =

⟨∆b⟩ ◦ ⟨∆a⟩ = ⟨b⟩ ◦ ⟨a⟩;
• a ⊑ b ⇒ ⟨a⟩ ⊑ ⟨b⟩ is obvious;
• x ⊑ y ⇒ ⟨a⟩x ⊑ ⟨a⟩y for all a ∈ S is

obvious.
□

FiXme: The above can be generalized for the
values of the metric to be certain ordered additive
semigroups instead of nonnegative real numbers.

1. Functions as metrics

We want to consider functions in relations with
MGNRM. So we we will consider (not only func-
tions but also) every morphism f of category Rel
as an MGNRM by the formulas ρf (x, y) = 0 if
x f y and ρf (x, y) = +∞ if not x f y.

Theorem 2143. If ρ is a MGNRM and f is a
binary relation composable with it, then:

1◦. (ρ ◦ f)(X, Y ) = ρ(Y, ⟨f⟩∗X);
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2◦. (f ◦ ρ)(X, Y ) = ρ(⟨f−1⟩∗
Y, X).

Proof.

(ρ ◦ f)(x, y) = inf
t

(f(X, t) + ρ(Y, y))

but f(X, t) + ρ(Y, t) = +∞ if not X [f ]∗ {t} and
f(X, t) + ρ(Y, t) = ρ(Y, t) if X [f ]∗ {t}. So

(ρ ◦ f)(X, Y ) =
inf

t∈
{

t
X[f ]∗{t}

} ρ(Y, t) =

inf
t∈⟨f⟩∗X

ρ(Y, t) =

ρ(Y, ⟨f⟩∗X).

The other item follows from symmetry. □

2. Contractions

What are (generalized) continuous functions
between metric spaces?

Let f be a function, µ and ν be MGNRMs.
Provided that they are composable, what does the
formula of generalized continuity f ◦ µ ⊑ ν ◦ f
mean?

Transforming the formula equivalently, we get:



2. CONTRACTIONS 61

∀x, z : (f ◦ µ)(x, z) ⊒ (ν ◦ f)(x, z);

∀x, z : µ({x},
〈
f−1

〉∗
{z}) ⊒ ν(fx, z);

∀x, z, y ∈
〈
f−1

〉∗
{z} : µ(x, y) ⊒ ν(fx, z);

∀x, y : µ(x, y) ⊒ ν(fx, fy).
So generalized continuous functions for metric

spaces is what is called contractions that is func-
tions that decrease distance.
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