[![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)]( https://numfocus.org) [![PyPI Downloads](https://img.shields.io/pypi/dm/numpy.svg?label=PyPI%20downloads)]( https://pypi.org/project/numpy/) [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/numpy.svg?label=Conda%20downloads)]( https://anaconda.org/conda-forge/numpy) [![Stack Overflow](https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg)]( https://stackoverflow.com/questions/tagged/numpy) [![Nature Paper](https://img.shields.io/badge/DOI-10.1038%2Fs41586--020--2649--2-blue)]( https://doi.org/10.1038/s41586-020-2649-2) [![OpenSSF Scorecard](https://api.securityscorecards.dev/projects/github.com/numpy/numpy/badge)](https://securityscorecards.dev/viewer/?uri=github.com/numpy/numpy) [![Typing](https://img.shields.io/pypi/types/numpy)](https://pypi.org/project/numpy/) NumPy is the fundamental package for scientific computing with Python. - **Website:** https://numpy.org - **Documentation:** https://numpy.org/doc - **Mailing list:** https://mail.python.org/mailman/listinfo/numpy-discussion - **Source code:** https://github.com/numpy/numpy - **Contributing:** https://numpy.org/devdocs/dev/index.html - **Bug reports:** https://github.com/numpy/numpy/issues - **Report a security vulnerability:** https://tidelift.com/docs/security It provides: - a powerful N-dimensional array object - sophisticated (broadcasting) functions - tools for integrating C/C++ and Fortran code - useful linear algebra, Fourier transform, and random number capabilities Testing: NumPy requires `pytest` and `hypothesis`. Tests can then be run after installation with: python -c "import numpy, sys; sys.exit(numpy.test() is False)" Code of Conduct ---------------------- NumPy is a community-driven open source project developed by a diverse group of [contributors](https://numpy.org/teams/). The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the [NumPy Code of Conduct](https://numpy.org/code-of-conduct/) for guidance on how to interact with others in a way that makes our community thrive. Call for Contributions ---------------------- The NumPy project welcomes your expertise and enthusiasm! Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion) first. Writing code isn’t the only way to contribute to NumPy. You can also: - review pull requests - help us stay on top of new and old issues - develop tutorials, presentations, and other educational materials - maintain and improve [our website](https://github.com/numpy/numpy.org) - develop graphic design for our brand assets and promotional materials - translate website content - help with outreach and onboard new contributors - write grant proposals and help with other fundraising efforts For more information about the ways you can contribute to NumPy, visit [our website](https://numpy.org/contribute/). If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open. Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at [email protected] or on Slack (write [email protected] for an invitation). We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join. If you are new to contributing to open source, [this guide](https://opensource.guide/how-to-contribute/) helps explain why, what, and how to successfully get involved.