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Abstract: Recent studies report that socioeconomic status (SES) correlates with brain 

structure. Yet, such findings are variable and little is known about underlying causes. We 

present a well-powered voxel-based analysis of grey matter volume (GMV) across levels of 

SES, finding many small SES effects widely distributed across the brain, including cortical, 

subcortical and cerebellar regions. We also construct a polygenic index of SES to control for 

the additive effects of common genetic variation related to SES, which attenuates observed 

SES-GMV relations, to different degrees in different areas. Remaining variance, which may be 

attributable to environmental factors, is substantially accounted for by body mass index, a 

marker for lifestyle related to SES. In sum, SES affects multiple brain regions through 

measurable genetic and environmental effects. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454131doi: bioRxiv preprint 

mailto:mfarah@upenn.edu
mailto:koellinger@wisc.edu
https://doi.org/10.1101/2021.07.28.454131
http://creativecommons.org/licenses/by-nc-nd/4.0/


One-sentence Summary: Socioeconomic status is linked with brain anatomy through a 

varying balance of genetic and environmental influences. 

 

Main Text: 

Socioeconomic status (SES), typically measured by income, education, occupation and 

neighborhood quality, is a powerful predictor of important life outcomes including physical 

and mental health, academic achievement and cognitive abilities (1–5). The brain plays a 

central role in these relations, most obviously in mental health and intellectual capabilities, but 

also in physical health through neuroendocrine and inflammatory pathways (6, 7). Thus, 

neuroscience provides a window on the biosocial pathways linking SES and human health and 

capabilities.  

Neuroscience research on SES has revealed a generally positive relation with overall 

brain volume, as well as with regional cortical and subcortical volumes and cortical surface 

areas (8–10). We note variability across studies in the regions most associated with SES, which 

may be due in part to the relatively small samples studied and in part to differences in the ways 

SES has been measured and analyzed (e.g., choices of covariates) (10, 11).  One of the goals 

of the present study is to establish the relation of SES to regional grey matter volumes (GMV), 

in the largest sample so far examined for voxel-level data, using a comprehensive measure of 

SES, controls for a number of potential confounds, and a well-powered, pre-registered analysis 

plan. 

The second goal of the study is to differentiate genetic from environmental causes of 

the SES-GMV relation. As hinted by recent studies (12–14), both kinds of mechanisms are 

plausible. The possibility of environmental influence on brain structure is shown by animal 

studies in which features of lower SES environments, such as poor nutrition, environmental 

toxins, chronic stress and limited cognitive stimulation, are experimentally manipulated and 
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found to impact brain structure (15), as well as the rare experimental study with human brains 

(16, 17).  The possibility of genetic influence is shown by the influence of genes on both human 

brain structure (18, 19) and aspects of SES (20–22). 

Here, we pursue these two goals using data from the UK Biobank (UKB), a large-scale 

prospective epidemiological study of individuals aged 40–69 years at recruitment (23, 24).  

After selecting participants who had undergone both MRI and genotyping, and had complete 

SES information related to occupation, income, education, and neighborhood quality, we 

excluded participants with clinical diagnoses related to brain pathology, morbid obesity, heavy 

alcohol drinking, or low data quality (25).  The resulting sample was 23,931 individuals, with 

a mean age of 62, 57% of whom were female. This sample size provides 90% statistical power 

to detect effects as small as R2 > 0.17% at the 5% significance level (corrected for multiple 

testing; uncorrected p < 2.19×10-6). We conducted voxel-based morphometry (VBM) analysis 

of grey matter volumes (GMV). T1 images were preprocessed with the Computational 

Anatomy Toolbox (CAT) 12, and anatomical regions were labeled according to the 

Neuromorphometrics atlas (26).  

SES was represented in the analyses to follow by two summary measures, derived from 

available SES variables using a generalized version of principal component (PC) analysis (Fig 

1 and S2). This approach better accommodates measurement error and allows us to appreciate 

the multidimensional nature of SES with just two components. PC1SES mainly captures the 

positive correlations between the different SES measures and is most strongly influenced by 

occupations, occupational wages, and education. PC2SES primarily reflects occupations and 

neighborhood qualities that are not strongly linked with educational attainment or income, e.g., 

individuals who live in relatively poor neighborhoods despite having high educational 

attainment. As shown later, PC2SES contributes to capturing non-genetic variation in SES. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454131doi: bioRxiv preprint 

https://paperpile.com/c/0CU8X3/ckgt
https://paperpile.com/c/0CU8X3/ckgt
https://paperpile.com/c/0CU8X3/ckgt
https://paperpile.com/c/0CU8X3/OCVR+KjkS
https://paperpile.com/c/0CU8X3/OCVR+KjkS
https://paperpile.com/c/0CU8X3/OCVR+KjkS
https://paperpile.com/c/0CU8X3/OCVR+KjkS
https://paperpile.com/c/0CU8X3/OCVR+KjkS
https://paperpile.com/c/0CU8X3/ilIg+Fm1d
https://paperpile.com/c/0CU8X3/ilIg+Fm1d
https://paperpile.com/c/0CU8X3/ilIg+Fm1d
https://paperpile.com/c/0CU8X3/ilIg+Fm1d
https://paperpile.com/c/0CU8X3/ilIg+Fm1d
https://paperpile.com/c/0CU8X3/iIa3+K4lGf+7toGm
https://paperpile.com/c/0CU8X3/iIa3+K4lGf+7toGm
https://paperpile.com/c/0CU8X3/iIa3+K4lGf+7toGm
https://paperpile.com/c/0CU8X3/iIa3+K4lGf+7toGm
https://paperpile.com/c/0CU8X3/iIa3+K4lGf+7toGm
https://paperpile.com/c/0CU8X3/5QijH+G4rJ8
https://paperpile.com/c/0CU8X3/5QijH+G4rJ8
https://paperpile.com/c/0CU8X3/5QijH+G4rJ8
https://paperpile.com/c/0CU8X3/5QijH+G4rJ8
https://paperpile.com/c/0CU8X3/5QijH+G4rJ8
https://paperpile.com/c/0CU8X3/ACLPw
https://paperpile.com/c/0CU8X3/ACLPw
https://paperpile.com/c/0CU8X3/ACLPw
https://paperpile.com/c/0CU8X3/7x5B
https://paperpile.com/c/0CU8X3/7x5B
https://paperpile.com/c/0CU8X3/7x5B
https://doi.org/10.1101/2021.07.28.454131
http://creativecommons.org/licenses/by-nc-nd/4.0/


We first examined the relation between total intracranial volume (TIV) and SES by 

regressing TIV on PC1SES and PC2SES, controlling for sex, age, genetic population structure, 

and a number of image-related technical covariates (25). PC1SES is positively associated with 

TIV (standardized 𝛽= 0.10; p = 1.1⨉10-87; 95% CI [0.09, 0.11]), while for PC2SES the relation 

is statistically indistinguishable from zero (standardized 𝛽= 0.01; p = 0.14; 95% CI [-0.00, 

0.02]). The two PCs together explain 1.6% of the variance of interest in TIV beyond the 

covariates of no interest (partial R2)—slightly higher than TIV’s relation to educational 

attainment (1.4%), and lower than its relation to fluid intelligence (2.6%) (27). 

Next, we conducted VBM analysis to test the association of these two PCs with regional 

GMV across the brain, using the same set of covariates.  Higher SES is associated with larger 

GMV across the brain (Fig 2A). 89.5% of the voxels have a statistically significant association 

with SES at a familywise error rate of 5%, all of which are positive. For statistically significant 

voxels the average partial R2 is 0.4% and the highest is 1.2%, with the strongest associations in 

the left ventral striatum and the right frontal pole. Thus, the positive relation between total brain 

volume and SES arises from many relatively small sources of structural variation that are 

widespread across the brain. 

Accordingly, when TIV is controlled for, just 8.5% of the voxels have a statistically 

significant association with SES and the average effect size in partial R2 is reduced by over half 

to 0.17% for statistically significant voxels. As shown in Fig 2B, the strongest positive 

associations between SES and relative GMV fall in the prefrontal, insular, frontal opercular, 

lateral parietal, and lateral temporal regions, as well as in subcortical areas including the 

cerebellum, striatum, and thalamus. While SES-GMV associations are mainly driven by 

PC1SES, PC2SES contribute relatively more in lateral temporal, cerebellar, and ventromedial 

prefrontal regions than in other regions (Fig 2B and S4A). 
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The regions implicated in these analyses include many reported in previous studies of 

SES and brain structure. While the cerebellum has not often been linked to SES, this may 

reflect its omission from many morphometric studies (but see (28), for a study of SES and 

cerebellar volume specifically, with positive findings). Conversely, hippocampus volume is 

often noted to correlate with SES. Although this was also found in the present study, it was not 

among the strongest relations. 

We also explored the influence of individual aspects of SES, such as education and 

income, by conducting a cluster-based analysis (Fig S8-S9) as well as VBM on each measure 

separately (Fig S5 and S11). The overall pattern of results is similar, with years of schooling 

being most strongly associated (25). 

SES-health relations are often stronger at lower levels of SES, where more extreme 

deprivation may impose unique effects on health (29, 30) and this pattern is also seen in SES 

effects on the cortex in children (31).  Stronger SES-GMV associations were found here in the 

lower SES participants of our sample as well (Fig S6) (32). Regionally, this is particularly 

apparent in the striatum (low SES, max partial R2 = 0.65%, TIV adjusted; high SES, max partial 

R2 = 0.17%, TIV adjusted) (25).  

An alternative measure of the strength of the SES-GMV relation is the ability of 

aggregate GMV measures to predict SES. Indeed, the small effect sizes for individual voxels 

do not imply that the association between SES and overall GMV structure is also small. To 

show this, we constructed brainwide GMV scores to predict PC1SES and PC2SES via a stacked 

block ridge regression (33) with 5-fold cross-validation. These scores predict ΔR2  = 4.9% (95% 

CI [4.4, 5.4]) of out-of-sample variation in PC1SES and ΔR2 = 0.5% (95% CI [0.3, 0.7]) in 

PC2SES (25). 

The second question to be addressed is the contribution of genetic and environmental 

influence to the SES-GMV relations reported here. We approached this by first estimating the 
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SNP-based heritability of SES and brain measures as well as the pairwise genetic correlations 

among them, which indicated that the genetic architectures of SES and brain structure are partly 

overlapping. We then constructed a polygenic index for SES (PGISES) using the results of the 

genome-wide association study (GWAS) from the UKB. In view of the sensitivity of GWAS 

results to differences in ancestry, we derived the index from UKB participants of European 

ancestry only, excluding the scanned participants and other participants genetically related to 

them. The genetic data consisted of relatively common genetic variants (single-nucleotide 

polymorphisms or SNPs) with minor allele frequency ≥1%, which were related to educational 

attainment, occupational wages, household income, local average income, and neighborhood 

quality, combined using Genomic SEM (21, 25, 34) (effective N = 849,744). PGISES was 

strongly associated with PC1SES (ΔR2 = 7.1%, p < 10-300) and weakly with PC2SES (ΔR2 = 

0.02%, p = 0.03). PGISES could then be used with images from participants of EA (N = 20,799) 

to help discriminate genetic from environmental causes of GMV differences. 

PGISES was then used to predict TIV (ΔR2 = 0.8%, p = 7.4⨉10-64) and GMV across the 

entire brain via VBM. The latter analysis revealed positive associations in widely distributed 

voxels (Fig 3A b.), with the most pronounced associations in the anterior insula, frontal 

operculum, prefrontal, anterior cingulate, and striatum. There is substantial overlap between 

the neuroanatomical correlates of SES and PGISES. Controlling for TIV, approximately 41% of 

the GMV voxels associated with SES are also associated with PGISES. This overlap is 

especially apparent in the insular and prefrontal cortices, with roughly 96% and 64% of the 

voxels associated with PCSES also associated with PGISES, respectively.  

We then examined to which extent the shared common genetic architectures of SES 

and GMV account for the observed phenotypic associations by comparing TIV-adjusted 

regression results of GMV on SES with and without controlling for PGISES. For 13% of the 

voxels significantly associated with SES before PGISES is controlled for, there is a statistically 
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significant change in at least one of the coefficients for PC1SES and PC2SES  after accounting 

for PGISES (25). Controlling for PGISES reduces the SES-GMV associations across the entire 

brain, with the greatest reduction in the anterior insula, frontal operculum, ventrolateral 

prefrontal cortex, and ventral striatum of both hemispheres, consistent with VBM of PGISES 

mentioned earlier (Fig 3B). When we correct for measurement error in PGISES using genetic 

instrumental variable regression (35), we estimate that PGISES accounts for more than half of 

the SES-GMV associations for many of these regions. On average, 38% of the SES-GMV 

associations (min = 3%, max = 87%) can be attributed to PGISES (25).  

The remaining associations between GMV and SES could be either due to 

environmental influences on both or due to rare SNPs, structural variants (e.g. inversions, 

deletions), or interactions among genes (i.e. epistasis) that PGISES does not fully account for. 

Forty-three percent of the voxels significantly associated with SES fall into this category, 

remaining associated with SES after controlling for PGISES (Fig 3A c.). The SES-GMV 

association is least attenuated by genetic controls in the cerebellum and lateral temporal, lateral 

parietal, posterior cingulate and primary motor regions, as well as some areas of the dorsolateral 

and ventromedial prefrontal cortex (vmPFC) and the thalamus. Controlling for PGISES accounts 

for less than 30% of the SES-GMV association in many of these regions. These results suggest 

that the aforementioned regions may be particularly susceptible to the influence of the 

socioeconomic environment. This is consistent with the relatively stronger association of 

PC2SES to GMV in many of these areas, as PC2SES was found to be barely heritable (25). In 

sum, a substantial portion of the SES-GMV relation is attributable to known genetics, and that 

portion varies according to region of the brain. The remaining portion of this relation is also 

substantial, and likely includes the effects of the environment. 

We then annotated the brain regions whose morphology was related to SES or its 

genetic influences by relating them spatially to fMRI meta-analyses of cognitive function. We 
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used 506 concepts from the Cognitive atlas knowledge base and obtained a meta-analyzed Z-

score brain map for each concept using the tool NeuroQuery (25, 36, 37). For each concept-

associated brain-map, we calculated the mean 𝜒2 based on voxels that overlapped with the 

VBM results (Fig 4). Prominent effects of genetic influences (PGISES) are seen in brain regions 

associated with sensory cognitive functions, risk processing, and motivation. The regions found 

to be likely more environmentally susceptible (i.e. SES PC ~ PGISES) reflect cognitive concepts 

related to executive control, working memory, and subjective well-being.  

We sought to strengthen evidence concerning environmental causation through the 

study of a specific environmental factor. Numerous environmental exposures are associated 

with SES and are plausible causal contributors to the SES-GMV relation found here. These 

include prenatal and childhood factors with lifelong effects, as well as adulthood exposures 

such as chronic life stress, nutritional status, physical exercise, environmental toxins, smoking 

and other substance use. Experimental research with animals and human research with 

longitudinal, quasi-experimental or experimental studies show that these are all capable of 

impacting the brain. On the basis of recent research with the same sample relating mid-life 

obesity to cognitive and brain aging (38), we chose body mass index (BMI) as marker for a set 

of lifestyle factors that could mediate the SES-GMV relation, including nutrition, physical 

activity, and obesity, which can impact the brain through their downstream effects on blood 

pressure, blood lipids, glucose metabolism and inflammation. In addition to the logical point 

that PGISES controls would account for genetic influences of BMI on the SES-GMV relation, 

there is also experimental evidence of SES affecting BMI through the environment: increasing 

SES causes BMI to decrease (39). 

 BMI accounts for an average of 44% of the SES-GMV associations that remain after 

controlling for PGISES (Fig 3C-D). This effect is not due to neurological disease associated 

with BMI, such as stroke or neurodegenerative disease, because neurological disease was an 
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exclusionary criterion for our sample. The effect is particularly large in the thalamus and the 

cerebellum as well as the lateral temporal region and some areas of the vmPFC. Furthermore, 

for the 91% of the voxels with significant SES-GMV association in the European ancestry 

sample, at least 50% of the estimated SES-GMV association can be attributed to PGISES and 

BMI combined, with 67% on average. 

Taken together, our results suggest that SES is linked with brain anatomy through a 

combination of genetic and environmental influences. The balance of genetic and 

environmental influence varies across brain regions. This insight suggests that brain health is 

more susceptible to SES-related stressors in specific regions, including the cerebellum.  
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B. 

Fig. 1. Measures of socioeconomic status and principal component analysis 

A. On the left, a distance correlation matrix is plotted for seven indices of socioeconomic status (SES). On the right, the squared loadings for each principal component are indicated.  

B. Scatter plots of the first principal component (PC1SES) against the second component (PC2SES). The points in different colors represent four SES groups defined by National Statistics 

Socio-economic Classification, which are approximately clustered by the two PCs. On the right, the same scatter plots are presented for each SES group. The mean values of each PC 

are indicated for each group. The regression lines are plotted to describe that SES is more complex for the lower SES groups.     
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B. 

Fig. 2. Manhattan plots: voxel-based morphometry of grey matter volume and socioeconomic status 

A. Univariate voxel-based morphometry (VBM) results on the two principal components (PC) for socioeconomic status. These regressions did not control for total intracranial volume 

(TIV).  p-values on log10  scale (upper) and partial R2 (lower) are plotted for each voxel. The sign of the association is that of the first PC. The voxels were anatomically labelled 

according to the Neuromorphometrics atlas and grouped by the labelled regions. Within each region, the voxels were ordered by their distance to the medoid of their region.   

B. Univariate VBM results with TIV controlled for. 
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D. 

 

Fig. 3. Voxel-based morphometry of socioeconomic status (SES) and its genetic and environmental components  

The sample was restricted to individuals of European ancestry. 

A. Univariate voxel-based morphometry (VBM) results, with grey matter volume (GMV) as the dependent variable. Voxels significant at FWE rate of 5% level are plotted for: a. the 

two principal components (PC) measuring socioeconomic status (SES), b. the polygenic index for SES (PGISES), c. SES while controlling for PGISES.  
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B. Percent reduction in the association between GMV and the two PC for SES due to controlling for PGISES. C. Percent reduction due to controlling for body mass index (BMI) in the 

residual association between GMV and the two PC for SES after controlling for PGISES. The figures plot only voxels which had significant SES-GMV association before PGISES and 

BMI were controlled for.   

D. Associations in partial R2 between the two PC for SES and GMV in voxel clusters attributable to PGISES and BMI. The numbers in the bars report the percent share in the SES-GMV 

association attributable to PGISES or BMI partialled out of PGISES. The clusters were formed from the VBM results plotted in A.a. See Table S9 for more information about the clusters.     

MNI coordinates are indicated for A. and B. Measurement error in PGISES was adjusted for with genetic instrument variable regression for B. and C.  
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Fig. 4. Functional annotation of brain regions associated with socioeconomic status (SES) 

506 cognitive concepts, belonging to 11 categories, were taken from Cognitive Atlas and their predicted fMRI meta-analysis results were generated by NeuroQuery. For each concept, 

mean 𝜒2 was computed with voxels statistically significant at the FWE rate of 5% level in the voxel-based morphometry results respectively for a. two principal components (PC) of 

SES, b. the polygenic index for SES (PGISES), and c. SES controlling for PGISES. The results for the top five concepts from each category were plotted.  
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1. Study overview

In this study, we aim to answer two research questions following a pre-registered analysis plan

(https://osf.io/kg29c/):

(1) Are there robust associations between socio-economic status (SES) and brain anatomy?

(2) How much of the association between SES and brain anatomy is due to common genetic

factors that are linked to SES?

To this end, we conducted voxel-based morphometry (VBM) analysis of grey matter

volumes (GMV) on socioeconomic status (SES), using a population sample of 23,931 older adults

from the UK Biobank (UKB) that contains brain images, genetic data, and several measures of

SES (23, 24).

Our phenotypic measures of SES uses all available information on SES that is available in

the UKB and fully recognizes the multidimensional nature of SES. In particular, we measure SES

as the first two principal components (PC) of available indices of household income, occupations,

neighborhood, and education. These PCs were then jointly tested for their association with

voxel-level GMVs in a univariate VBM. Permutation testing was used to maintain a familywise error

rate of 5%.

To investigate the genetic basis of the estimated SES-GMV associations, we constructed a

polygenic index for SES (PGISES) derived from multiple genome-wide association studies (effective

N=849,744) and adjusted for measurement error in PGISES using genetic instrumental variable

regression (35). We then examined to which extent the estimated SES-GMV associations can be

attributed to the shared common genetic architectures of SES and the GMV structure by

comparing regression results of GMV on SES before and after controlling for the polygenic index

for SES.

Our analysis was carried out under the auspices of the Brain Imaging and Genetics in

Behavioral Research Consortium (https://big-bear-research.org/).

2. Sample description

We used publicly available data from the UKB, which recruited ≈500,000 participants from the

general population of the UK (23, 40). Study participants were 40-69 years old at recruitment

between 2006-2010. Our study sample originates from 40,681 individuals whose structural T1

MRI images were available in January 2020 (data field 20252). To derive voxel-level grey matter

volumes, we processed T1 images from 38,545 genotyped individuals with the Computational

Anatomy Toolbox (CAT) 12 for SPM (see Section 3.1 for details). We then applied several filters to

ensure data quality and avoid spurious findings.
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We excluded:

- 24 individuals with mismatch between genetic (data field 22001) and self reported sex

(data field 31)

- 1,818 individuals with clinical diagnoses related to brain pathology (including dementia,

Alzheimer’s, Parkinson’s, and chronic degenerative neurological diseases, Guillan-Barré

syndrome, multiple sclerosis, other demyelinating diseases, stroke or ischaemic stroke,

brain cancer, brain haemorrhage, brain or intracranial abscess, cerebral aneurysm, cerebral

palsy, encephalitis, epilepsy, head injury, infections of the nervous system, meningeal

cancer, meningioma, meningitis, ALS, neurological injury or trauma, spina bifida, subdural

haematoma, subarachnoid haemorrhage, or transient ischaemic attack; see the

pre-registered plan for ICD10 codes - https://osf.io/kg29c)

- 2,705 individuals who were morbidly obese (BMI > 35)

- 2,427 individuals who were current heavy drinkers, where heavy drinking is defined as

consuming more than 24 drinks per week for males and more than 18 drinks per week for

females (41, 42)1

- 11 individuals with the image-quality rating (computed by CAT12) lower than “C”

- 230 individuals with a sample homogeneity measure (mean voxel correlation ) lower than2

the 1% quantile (0.805 based on all 38,545 individuals)

After applying these exclusion criteria, 31,330 individuals remained in our sample. 7,215

individuals were further excluded due to missing data for the variables listed in Section 3. In order

to rule out that our results are influenced by shared family environments among related

individuals, we also removed close relatives by randomly dropping one from each pair of siblings

or parent-offsprings. Our final sample for the main analysis included N = 23,931 individuals. In

analyses that employed genetic data, we included N = 20,799 individuals of European ancestry

from this sample.

3. Measures

3.1. Imaging-derived phenotypes (IDPs)

We extracted GMV on the voxel level from T1-weighted structural brain MRI images

provided in NIFTI format (data field 20252). The UKB scanned the participants with a Siemens

Skyra 3T scanner using a standard 32-channel head coil (Siemens Healthcare, Erlangen,

2 We first estimated a correlation matrix with elements being correlation estimates between individuals
computed from voxel-level GMV. The mean voxel correlation corresponds to column-wise (or equivalently
row-wise) averages of this matrix.

1 The sum of data fields 1568,1578,1588,1598, and 1608.
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Germany) in three assessment centers (Cheadle, Newcastle, and Reading). The scanning and

processing protocols are detailed in the UKB’s brain imaging documentation

(https://biobank.ctsu.ox.ac.uk/ crystal/crystal/docs/brain_mri.pdf) as well as in publications (23,

43).

We first pre-processed the T1 images with the Computational Anatomy Toolbox (CAT) 12

for SPM (www.fil.ion.ucl.ac.uk/spm/software/spm12/). The images were corrected for bias-field

inhomogeneities, tissue-segmented, spatially normalized to the MNI space with 1.5mm resolution

by linear and non-linear transformations, and were modulated to ensure that the total amount of

signal in the original image was preserved during spatial normalization. 8-mm

Full-Width-at-Half-Maximum Gaussian kernel was then used to spatially smooth the

pre-processed images. More details can be found in our pre-registered analysis plan

(https://osf.io/kg29c/) as well as in the recent publications of BIG BEAR consortium (41, 42).

Following the standard VBM procedures (see e.g. SPM/CAT12

http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf), we decided to exclude all voxels from

the VBM analyses that did not contain any or sufficient grey matter. To determine this, we first

computed the average of all GMV images and then thresholded the average brain image at 250

GMV intensity units. The resulting binarized image was then applied as a pre-mask to all individual

images. After applying a gray matter mask derived from the data and dropping the voxels unlikely

to contain any gray matter (41), GMV estimates from 504,426 voxels were used in the analysis.

3.2. SES measures

The UKB offers a rich set of SES indicators, including education, income, occupation, and

neighborhood quality. In order to make full and efficient use of the data, we took a data-driven

approach to measure SES by extracting principal components (PC) that capture overall SES from

all SES measures available in the UKB. Our approach can be summarized as follows: We (1)

collected every available source of information relevant to SES in the UKB; (2) combined

measures or derived new variables when possible or appropriate; (3) extracted PCs that represent

a sparse, but accurate overall measure of SES; (4) and jointly tested for neuroanatomical

association of these PCs based on an F-test.

There are several important reasons that motivated us to use this approach. First, it

allowed us to take into full account the multidimensional nature of SES. While each SES

dimension tends to share the same direction of correlation, there often are cases that do not agree

with such correlation in reality: for instance, a plumber may have less education than a university

lecturer, but may earn higher income. Furthermore, the quality of a neighborhood in which an

individual lives is an important dimension of SES, but it may be imperfectly correlated with
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education and income. Such complex aspects of SES cannot be represented by a single SES

measure such as education or income alone.

Second, our data-driven approach is useful for efficiently testing for the association

between SES and neuroanatomy by summarizing the available measures and thereby decreasing

the multiple testing burden and increasing the statistical power of our analyses.

Third, this approach also makes it possible to use the detailed occupation data of the UKB

to a fuller extent. Because it is difficult to handle many occupational categories in a single

analysis, studies often use an aggregated summary of occupation by classifying occupations into

a small number of predefined categories. Such a predefined classification can discard potentially3

useful information and may not truly represent different levels of SES. A data-driven approach can

efficiently reduce wide categorical data of occupation into lower continuous dimensions, while

minimizing information loss.

Fourth, our approach addresses important limitations of educational attainment measures

in the study sample. In the UKB, qualifications are reported in only six non-hierarchical categories,

some of which cover a wide range of educational levels. Furthermore, participants were allowed to

indicate multiple categories without a specific instruction, which led to a large degree of variation

in responses. For this reason, we chose not to use years of schooling as often done (21), but

instead determined the highest qualification for each participant in a data-driven way and used it

as a categorical variable.

3.2.1. Available measures of SES in the UK Biobank

We collected and constructed an extensive set of SES measures as described in the table below.

We derived some of the variables by relying on external data sources or aggregating several

measures. The participants visited the assessment center up to four times and brain images were

taken during the third or fourth visit (the fourth visit was for repeated imaging of a subset of

participants). While the data used here was primarily collected during the brain imaging visit at the

assessment centers, we used the latest available information if a measure was missing from this

visit.

Measure
Data
fields

Variable Description

3 One example is using the UK’s National Statistics Socio-economic Classification, which reduces the
occupation data to 3 or 8 classes.
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Occupation
132,
20024,
22617

81
categories

Job codes for the latest job held before the age of 65,
coded in 3-digit UK standard occupational classification
(SOC) 2000.4

Occupational
wages (log)*

132,
20024,
22617

Continuous

Sex-specific average occupational wage matched to
4-digit SOC codes. The wage data are obtained from the
UK’s Office for National Statistics, averaged over
2002-2010.

Household
income 738 5 categories Average total household income before tax

Housing type 680 6 categories e.g., own outright, own with mortgage, rent

Local average
household
income (log)*

20074,
20075 Continuous

Derived by matching home locations to Middle-layer
Super Output Areas. The income data are obtained from
the UK’s Office for National Statistics (England and Wales
only)

Neighborhood
SES score*

26411,
26412,
26414

Continuous

Weighted average of three composite deprivation indices
for income, employment, and education, constructed at
the level of Lower-layer Super Output Areas (England
only). The weights were derived by using the inverse of
the correlation matrix.5

Highest
qualification* 6138 7 categories See the following description in section 3.2.1.1.

Note: The asterisks (*) indicate that the variable is derived.

- 3.2.1.1. Highest qualification

This subsection describes how we derived the highest qualification. During the assessment,

participants were asked to choose qualifications that they have from the below options:

1 College or University degree
2 A levels/AS levels or equivalent
3 O levels/GCSEs or equivalent
4 CSEs or equivalent
5 NVQ or HND or HNC or equivalent
6 Other professional qualifications eg: nursing, teaching
7 None of the above

Because participants were able to choose multiple qualifications and also because the vocational

category (NVQ or HND or HNC or equivalent) covers an extensive range of educational levels, it

5 This method takes a weighted average of multiple outcomes such that outcomes highly correlated with
each other are assigned less weight, while outcomes receive more weight if they are less correlated and
therefore represent new information. See (44) for details.

4 While the UKB offers the occupation codes in 4-digits, we used 3-digit information to “blur” the data on
purpose in order to address possible classification errors for such finely-defined occupation groups. Also,
there were some 4-digit level occupation groups where too few individuals were observed, which can add
more noise than signal. On the contrary, for occupational wages, we used 4-digit SOC codes because the
wage data from the national statistics was used and classification errors should have less impact.
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was not straightforward to determine the highest qualification for qualifications below college

degree. Preferably, a better qualification should correspond to a better SES. We therefore used

the following procedure to determine the rank of each qualification.

We first created a new categorical qualification variable that treats each combination of

multiple choices as a unique response. Using the method described in Section 3.2.2, we

extracted the first PC from this variable along with the rest of SES variables listed above. The

average of the first PC was then computed for each qualification from a group of people who

reported having that qualification. Note that these groups are not mutually exclusive as the

individuals can belong to multiple groups. We then determined the SES-rank of qualifications

based on these average PC scores. This approach yielded the following ranking:

1 College or University degree
2 A levels/AS levels or equivalent
6 Other professional qualifications eg: nursing, teaching
3 O levels/GCSEs or equivalent
5 NVQ or HND or HNC or equivalent
4 CSEs or equivalent
7 None of the above

The highest qualification was chosen for each individual according to this rank, which was then

included as a categorical variable in the principal component analysis described below.

3.2.2. Data reduction by principal component analysis

We reduced the dimensions of the data by extracting PCs, which represent overall SES

implied by the available indicators. Standard principal component analysis (PCA) is only suitable

for non-categorical data. Thus, to account for the fact that we have both non-categorical and

categorical SES indicators, we employed a method that is often called factorial analysis of mixed

data, which is essentially a generalization of PCA that can handle such mixed data (45, 46). This

method combines ordinary PCA for non-categorical data with multiple correspondence analysis

for categorical data and is implemented in the R package PCAmix (47).

Our purpose here was not a factor extraction that finds all relevant factors as typically

done, but to exploit only the most meaningful variation in the UKB’s SES data to facilitate efficient

discovery of neuroanatomical correlates of SES. For this purpose, it was optimal to use the

minimal number of PCs that could sufficiently capture the multidimensional nature of SES. Given

this objective, we used the first two PCs (PC1SES and PC2SES) as aggregate indicators of SES

because these PCs were sufficient to explain the overall SES.

Fig 1B and S2 clearly demonstrate that the first two PCs are both necessary and sufficient

to reasonably differentiate major SES groups. The later PCs no longer appear to contribute to

distinguishing different SES levels. PC1SES mainly distinguishes high and low SES groups and
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appears to reflect the positive correlation among different SES measures. PC1SES mostly loads

individual differences in occupation, educational attainment, and income (Fig 1A). On the other

hand, PC2SES contributes more to explaining the residual variation in the lower SES groups and

illustrates more subtle aspects of SES. PC2SES primarily reflects occupation and neighborhood

qualities that are not strongly linked with educational attainment or income (Fig 1A and S2 and

Table S2).

Furthermore, the PCA results reveal the complex nature of SES within lower SES groups.

Fig 1B shows that the lower SES a group represents, the more positively correlated the two

components are. While the highest SES group even has a lower mean value of PC2SES compared

to that of the lower SES groups, relatively better-off individuals within the lower SES groups tend

to have higher levels of both PC1SES and PC2SES. These observations imply that the dimensions of

SES are more complex in the lower SES groups. Overall, these results demonstrate the

multidimensional nature of SES, which cannot be sufficiently described by a single SES measure.

Fig S3 plots the eigenvalues of the extracted PCs. PC1SES represents a dominantly large

part of the variation from our SES measures (eigenvalue=2.77). The eigenvalues decrease

substantially from PC2SES, which nonetheless explains an important amount of variation

(eigenvalue=1.44). While the eigenvalues of the third and fourth PCs are not very different from

that of PC2SES, these PCs do not appear to explain the meaningful variation in SES as shown

earlier.

Prior to the analyses, we standardized PC1SES and PC2SES so that they have zero mean and

unit variance.

3.3. Control variables

We used the following variables as baseline control variables.

● Age at brain scan (linear, squared, and cubed terms) - field 21003
● Sex - field 31
● Age (linear, squared, and cubed terms) ⨯ Sex
● Total intracranial volume - estimated from CAT12
● Site of acquisition (Cheadle, Reading, or Newcastle) - field 54
● A natural cubic spline function of acquisition date (number of days when the acquisition

happened since the acquisitions started) with 3 degrees of freedom - field 536

● Time of test (in seconds)  - field 21862
● Interaction terms of acquisition site with all of the above
● The first 40 PCs of the genetic data - field 22009
● Genotyping array (UK BiLEVE or UK Biobank Axiom array) - field 22000

6 The analysis plan specified 5 degrees of freedom for this, but we used 3 degrees of freedom due to rank
deficiency.
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The acquisition date and time were included as control variables based on a recent paper (48),

indicating that these variables account for subtle differences in the UKB’s assessment protocols

over time. For instance, Fig S1 demonstrates that there is a subtle temporal pattern over time

since the UKB started collecting MRI images. We used a natural cubic spline function in order to

capture highly non-linear patterns flexibly. The first 40 genetic PCs were also used to control for

the genetic population structure and the genotyping array to control for potential confounds in the

genetic PCs due to different arrays used.

3.4. Genome-wide association studies and construction of the polygenic index for

SES

As a measure of genetic variation associated with SES, we used a polygenic index (PGI) that

additively summarizes the effects of more than 1 million genetic markers. The genetic markers

used here are single nucleotide polymorphisms (SNP), which are the most common form of

genetic variation. A PGI of individual i is a weighted sum of SNPs:𝑠
𝑖

𝑠
𝑖

=
𝑗=1

𝑀

∑ β
^

𝑗
𝑥

𝑖𝑗

where represents the genotype of individual i for SNP j coded as the count of the reference𝑥
𝑖𝑗

allele. We estimated the weights from genome-wide association studies (GWAS), whichβ
^

𝑗

conduct univariate regressions of an outcome on each SNP across the genome. The resulting

estimates were then adjusted for the correlation between the SNPs to obtain the weights .β
^

𝑗

We constructed a PGI for SES (PGISES) by combining multiple GWAS results of SES

indicators, which included educational attainment, occupational wages, household income, local

average income, and neighborhood score (see further details below). We conducted GWAS on

each of these measures with the UKB participants of European ancestry, excluding those in the

analysis sample of this study as well as their close relatives (up to the third degree of relatedness7

). We ran each GWAS with a linear mixed model, estimated by BOLT-LMM (49).

Educational attainment (years of schooling) was coded in the same way as the recent

large-scale GWAS (21). Household income was coded as the natural log of the midpoint income

of each income bracket. The remaining indicators were the same as described in Section 3.2.1.8

Except for educational attainment, GWAS was run on male and female samples separately and

8 For the lowest and highest brackets, which are open-ended, 3/4 times the upper bound and 4/3 times the
lower bound were used as the midpoint, respectively.

7 This corresponds to everyone in the relatedness table reported by the UKB (minimum kinship coefficient =
0.04). See (24) for more details.
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the male and female results of each measure were meta-analyzed by the meta-analysis version of

MTAG (50) to account for possible sex heterogeneity in socio-economic outcomes. The sample9

sizes for each measure varied from 250,865 to 401,026 participants. For educational attainment,

the GWAS result was meta-analyzed with the existing GWAS meta-analysis result of educational

attainment (21), which excludes the UKB. More details of these GWAS are summarized in Table

S4.

Finally, we combined these GWAS results to represent general SES by the common-factor

GWAS function of Genomic SEM (34). The effective sample size of this common-factor SES

GWAS amounts to 849,744 (51). We then constructed the PGI for SES for those of European

ancestry in the analysis sample (N = 20,799). To adjust for the correlation between the SNPs, we

used a Bayesian approach called LDpred (52, 53) with a reference panel from the Haplotype

Reference Consortium (version 1.1) (54). The SNPs included in the PGISES were limited to the

autosomal bi-allelic SNPs established by the International HapMap 3 Consortium (55), which are

known to work well for phenotype predictions (21, 56). The SNPs were also filtered to ensure

minor allele frequency > 0.01, the imputation score (INFO) > 0.7, and the missing rate < 0.05. As a

result, 1,020,632 SNPs were used for PGISES. The PGISES was standardized to have zero mean and

unit variance.

PGISES predicts about ΔR2=7.1% of the variation of PC1SES out-of-sample among

individuals of European ancestries, above and beyond the control variables (age, age2, age3, sex,

interactions between sex and the age terms, genotyping array, and the first 40 genetic PCs). On

the contrary, PGISES barely predicts PC2SES, explaining ΔR2=0.02% of its variation.

4. Statistical analyses

4.1. Voxel-based Morphometry (VBM) analysis

4.1.1. Baseline analysis

Our baseline analysis estimated the associations between voxel-level GMV and the two SES PCs.

For each voxel j, we estimated the following regression model via ordinary least square (OLS):

(1) 𝐺𝑀𝑉
𝑖
𝑗 = β

1
𝑗𝑃𝐶1

𝑆𝐸𝑆,𝑖 
+ β

2
𝑗𝑃𝐶2

𝑆𝐸𝑆,𝑖 
+ 𝑍

𝑖
𝑇γ𝑗 + ε

𝑖
𝑗

where the GMV of voxel j is regressed on the two SES PCs. The vector include the control𝑍
𝑖

variables listed in Section 3.3. is the error term. The GMV and the SES PCs were standardizedε
𝑖
𝑗

9 MTAG was used especially because it is robust to the relatedness between the samples. MTAG can be
viewed as a generalization of the conventional inverse-variance-weighted meta-analysis.
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to have zero mean and unit variance. An F-test was used for each voxel to test whether there is

significant association between voxel j’s GMV and the SES PCs jointly with the the null hypothesis

. We measured the association size by the variance of interest in GMV explained byβ
1

𝑗 = β
2

𝑗 = 0

the SES PCs beyond the covariates of no interest, i.e., partial R2 := .(𝑅
𝑃𝐶+𝑍
2 − 𝑅

𝑍
2) / (1 − 𝑅

𝑍
2) 𝑅

𝑃𝐶+𝑍
2

is the R2 from the unrestricted model, which includes the two SES PCs and the covariates of no

interest, and is the R2 from the restricted model, which only includes the covariates of no𝑅
𝑍
2

interest. We also quantified the relative contribution of PC1SES in the overall association size by

. We used permutation testing to correct for multiple hypothesis(𝑅
𝑃𝐶1+𝑍
2 − 𝑅

𝑍
2) / (𝑅

𝑃𝐶+𝑍
2 − 𝑅

𝑍
2)

testing across voxels (see Section 4.1.3 for details).

After the estimation, we anatomically labeled the voxels using the Neuromorphometrics

atlas provided in CAT12. For a summary purpose, we also generated cluster-based estimates.

Each cluster consists of at least 200 neighboring voxels within the lobe which are significant at10

the familywise error rate of 5% in the baseline model. We then repeated the same analysis with

mean GMV of these clusters.

4.1.2. Controlling for total intracranial volume (TIV)

Analyses that aim to identify associations between localized GMV and outcomes typically control

for TIV, since volumetric brian measures scale with the head size. However, controlling for TIV as a

linear covariate has important statistical implications for identifying localized GMV patterns linked

to SES, because TIV is positively correlated with both SES and regional GMV. In Fig 2B, GMV of

some voxels appear to have negative association with SES when the TIV is included as a control

variable in the model. On the contrary, Fig 2A shows that almost all the voxel-level GMV are

positively associated with SES when TIV is not controlled for. This result indicates that the

absolute GMV-SES association is unlikely to be negative in any brain region.

To formally illustrate this point, consider a VBM model for SES with only the TIV as a

covariate without loss of generality:

(2) 𝐺𝑀𝑉
𝑖

= β
∼𝑇𝐼𝑉

𝑆𝐸𝑆
𝑖

+ γ𝑇𝐼𝑉
𝑖

+ ε
𝑖

where is the GMV of some voxel and denotes the association between the voxel’s𝐺𝑀𝑉
𝑖

β
∼𝑇𝐼𝑉

GMV and SES while TIV is accounted for. Each variable is standardized to have zero mean and

unit variance without loss of generality. corresponds to the association between the GMV andγ

the TIV, conditional on SES. The linear dependence between the TIV and SES can be described

10 Limbic, cerebellum, insular, frontal, parietal, occipital, and temporal
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as: . If we denote as the coefficient of SES from the regression of the GMV𝐸[𝑇𝐼𝑉
𝑖
|𝑆𝐸𝑆

𝑖
] = λ𝑆𝐸𝑆

𝑖
β

on SES without the TIV as a covariate, can be written as:β
∼𝑇𝐼𝑉

(3) β
∼𝑇𝐼𝑉

= β − λγ

Therefore, if both and are positive and large, can be negative even when is positive.λ γ β
∼𝑇𝐼𝑉

β

Our data suggests that this is indeed the case: With the baseline model , we estimated11 λ 
^

= 0. 10

for PC1SES and for PC2SES. was on average 0.46 with the minimum=0.11 (right exteriorλ 
^

= 0. 01 γ
^

cerebellum) and the maximum=0.72 (left gyrus rectus). Since estimates of are positive for theβ

vast majority of the voxels, one cannot conclude that the absolute GMV-SES association is truly

negative even when estimates of are negative. Instead, such negative estimates areβ
∼𝑇𝐼𝑉

evidence that is large relative to and that the GMV-SES association is essentially very smallλγ β

or non-existent for these regions.

Therefore, caution is warranted when interpreting the results when TIV was adjusted for as

a covariate. For this reason, we reported the VBM results both with or without TIV included as a

covariate. Furthermore, given the above, our results suggest that SES is associated with greater

gray matter across almost all brain regions investigated, despite small exceptions with negative

estimates after adjusting for the TIV. Note that TIV was always included as a control variable

unless otherwise stated.

4.1.3. Multiple testing correction

To correct for multiple testing across voxels, we used permutation testing to determine a p-value

threshold that controls the familywise error (FWE) rate of 5% (57). Following a comprehensive

simulation study that examined several permutation approaches for the brain-imaging (58), we

applied the method developed by Freedman and Lane (1983) to construct an empirical

distribution of test statistics (59). Consider an matrix Y where column j is a length-N vector𝑁 × 𝑀

of voxel j’s GMV with the number of the voxels. Each column was first residualized of the𝑀

covariates of no interest ( ). Matrix Y was then permuted row-wise so that the correlation𝑍
𝑖

structure among the voxels was preserved. We then regressed each of the permuted GMV on the

non-permuted, original regressors and recorded the maximum F-statistic. We repeated this

process 5,000 times to form a distribution of the maximum F-statistics. We used the p-value

11 Here, we did not interact TIV with the site of acquisition for simplicity when obtaining these estimates.
There was no much difference in TIV due to images taken in different acquisition sites.
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computed from the 95th percentile of this distribution (F = 13.04) as the p-value threshold for 5%

FWE-corrected significance level, which corresponds to p = (uncorrected).2. 193 × 10−6

While in principle the permutation testing has to be performed for each different analysis,

the resulting p-value thresholds differed only marginally and the threshold for the baseline model

was the most conservative. Therefore, we used the threshold for every voxel-based2. 193 × 10−6

analysis.

4.1.4. Stratified analysis of high and low SES groups

To investigate potential heterogeneity across different SES groups, we conducted the same VBM

analysis separately on high and low SES groups. High and low SES groups were defined by

National Statistics Socio-economic Classification of the UK (32): high SES group holds a

managerial, administrative, or professional occupation and low SES group holds intermediate,

routine, or manual occupation (Nhigh = 15,611, Nlow = 8,320).

4.1.5. VBM of Individual SES measures

To gain additional insight into the neuroanatomical correlates of SES, we conducted additional

VBM analyses on each of the five individual numerical SES measures used to construct the SES

PGI, described in Section 3.4. Note that the main purpose of these analyses was not to discover

novel neuroanatomical correlates from each SES measure, but rather to compare neuroanatomical

correlates across these measures.

4.2. Estimating the overall association between SES and GMV structure

Our VBM results demonstrate that the association between SES and an individual GMV IDP is

small and does not exceed partial of 1% with TIV adjusted for. One might then ask how large𝑅2

the brainwide association between SES and the gray matter structure is if we can aggregate

individual SES-GMV association estimates from individual voxels. Estimating the overall

association is not an easy task because of the high dimension of the voxel-level GMV data and

the strong spatial correlation among the voxels. We addressed these challenges by constructing a

brainwide GMV score for SES with a machine learning technique. We used a stacked block ridge

regression approach inspired by a recent whole-genome regression method (33). This approach

allows us to tackle the high dimension issue by stacked regressions and the spatial correlation by

the use of ridge regressions without excessive computational burden. Ridge regressions also

ensure that we only capture linear relationships between SES and the GMV structure.

We constructed a brainwide GMV score for each SES PC in two steps:
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(1) Voxels were first partitioned into blocks of 10,000 adjacent voxels. For each block, we ran

a ridge regression of each SES PC on its 10,000 voxel-level GMVs with arbitrarily-chosen

varying shrinkage parameters: {100, 1002, 1003}. We then computed predictions for each

SES PC for each value of the shrinkage parameters, resulting in 3 predictors for each SES

PC from each block. This resulted in 153 predictors from 51 blocks partitioned from

504,426 voxels.

(2) After collecting the predictors from all the blocks, a ridge regression was run on them

together again. The prediction from this regression was used as a brainwide GMV score.

Both steps were implemented in 5-fold nested cross-validation: In the outer loop, the

sample was split into 20% test set and 80% training set, the latter of which was again split into

20% validation set and 80% training set in the inner loop. In the inner loop, cross-validation was

used to tune the shrinkage parameter for the step-2 ridge regression. The outer loop was used to

train the final model and obtain predictions for the test set given the obtained value of the

shrinkage parameter from the inner loop. We ensured that no information from the test set was

used in the model training.

To measure the overall association between each SES PC and the GMV structure, we used

a change in R2 after including the corresponding brianwide GMV score to the regression. The

covariates used were age, age2, age3, sex, interactions between sex and the age terms, TIV,

genotyping array, and the top 40 genetic principal components. We computed confidence

intervals with 1,000 bootstrapped samples.

Of note, we do not claim here that this approach is the best way of constructing a

brainwide score or estimating the brainwide association. The primary goal of this analysis is to

demonstrate that SES is associated with GMV structure to a substantial degree.

4.3. Incorporating genetics

4.3.1. VBM with PGI

Using PGISES, we conducted the following additional VBM analyses: (1) VBM of SES PCs only with

individuals of European Ancestry (2) VBM of PGISES (3) VBM of the SES PCs controlling for PGISES.

These VBMs were carried out in the same way as the baseline analysis detailed in Section 4.1. We

then examined which GMV voxels are significantly associated with the SES PCs and/or the PGI

and examined changes in SES-GMV associations before and after the PGI was controlled for.

Note that we measured partial R2 of the PCs for VBM of the SES PCs controlling for PGISES as

to be able to compare it with partial R2 from VBM of SES PCs. In(𝑅
𝑃𝐶+𝑃𝐺𝐼+𝑍
2 − 𝑅

𝑃𝐺𝐼+𝑍
2 ) / (1 − 𝑅

𝑍
2)
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addition to probing the difference in statistical significance after the PGI was controlled for, we

directly tested whether controlling for the PGI significantly altered the SES-GMV association.

4.3.2. Testing differences in SES-GMV associations with and without PGI as a control

variable

We used a Wald test to examine whether there was a significant difference in the SES-GMV

association before and after the PGISES was controlled for. More specifically, consider a model

where PGISES is added to the model (1) and also set up an auxiliary regression of the PGI on the

SES PCs and the covariates for each voxel:

(4) 𝐺𝑀𝑉
𝑖
𝑗 = β

~
1

𝑗
𝑃𝐶1

𝑆𝐸𝑆,𝑖 
+ β

~
2

𝑗
𝑃𝐶2

𝑆𝐸𝑆,𝑖 
+ θ𝑗𝑃𝐺𝐼

𝑖
+ 𝑍

𝑖
𝑇γ
~ 𝑗

+ ε
~

𝑖

𝑗

(5) 𝑃𝐺𝐼
𝑖

= δ
1
𝑃𝐶1

𝑆𝐸𝑆,𝑖 
+ δ

2
𝑃𝐶2

𝑆𝐸𝑆,𝑖 
+ 𝑍

𝑖
𝑇ψ + 𝑢

𝑖

Using vector notations: , , , which are all length-2β𝑗 = [β
1

𝑗  β
2

𝑗]𝑇 β
~𝑗

= [β
~

1

𝑗
  β
~

2

𝑗
]𝑇 δ = [δ

1
  δ

2
]𝑇

vectors, it can be shown:

(6) β𝑗 − β
~𝑗

= θ𝑗 · δ = ∆𝑗

Therefore, the vector represents the difference in the SES-GMV association for voxel j due to∆𝑗

controlling for PGISES. can be estimated as the product of estimates of and from the model∆𝑗 θ
^𝑗

δ
^

(4) and (5), respectively. A Wald test was then used to test the null with the test statistic:∆𝑗 = 0

, where was approximated by the delta method:∆
^ 𝑗𝑇

𝑉𝑎𝑟
^

 (∆
^ 𝑗

)−1∆
^ 𝑗

∼ χ2
2

𝑉𝑎𝑟
^

 (∆
^ 𝑗

)

. Note that this analysis is statistically equivalent to a𝑉𝑎𝑟
^

 (∆
^ 𝑗

) ≈ 𝑉𝑎𝑟
^

 (θ
^𝑗

)δ
^𝑇

δ
^

+ θ
^𝑗2

𝑉𝑎𝑟
^

 (δ
^

)

mediation analysis with PGISES being a mediator (60). We conducted this test only for the voxels

whose GMV was significantly associated with the PCs. Then, the multiple testing was corrected

for using Bonferroni correction (the corrected 5% threshold = with 34,188 tests).1. 46 × 10−6

4.3.3. Measuring differences in SES-GMV associations with and without PGI as a control

variable

To represent the relative size of in relation to partial R2, we used the relative change in the net∆𝑗

variation explained by the SES PCs after adding PGISES to the model with the covariates of no

interest: . This measure is bounded between[(𝑅
𝑃𝐶+𝑍
2 − 𝑅

𝑍
2) − (𝑅

𝑃𝐶+𝑃𝐺𝐼+𝑍
2 − 𝑅

𝑃𝐺𝐼+𝑍
2 )]  / (𝑅

𝑃𝐶+𝑍
2 − 𝑅

𝑍
2)
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0 and 1 as long as the sign of the coefficients for PC1SES and PC2SES do not change after

controlling for PGISES. This expression can be interpreted as the percent change in the SES-GMV

associations due to controlling for PGISES and essentially the part of the SES-GMV association

that can be attributed to PGISES. Note that, because PC2SES is barely predicted by PGISES and even

barely heritable (Table S5), the percent change in SES-GMV association after controlling for PGISES

is essentially due to the change in PC1SES-GMV association. We can therefore rewrite the earlier

expression as:

(7) [(𝑅
𝑃𝐶+𝑍
2 − 𝑅

𝑍
2) − (𝑅

𝑃𝐶+𝑃𝐺𝐼+𝑍
2 − 𝑅

𝑃𝐺𝐼+𝑍
2 )]  / (𝑅

𝑃𝐶+𝑍
2 − 𝑅

𝑍
2) 

≈ [(𝑅
𝑃𝐶1+𝑍
2 − 𝑅

𝑍
2) − (𝑅

𝑃𝐶1+𝑃𝐺𝐼+𝑍
2 − 𝑅

𝑃𝐺𝐼+𝑍
2 )]  / (𝑅

𝑃𝐶+𝑍
2 − 𝑅

𝑍
2)

= ∆
𝑃𝐶1

 /  (𝑅
𝑃𝐶+𝑍
2 − 𝑅

𝑍
2)

= [∆
𝑃𝐶1

 / (𝑅
𝑃𝐶1+𝑍
2 − 𝑅

𝑍
2)] × [(𝑅

𝑃𝐶1+𝑍
2 − 𝑅

𝑍
2) / (𝑅

𝑃𝐶+𝑍
2 − 𝑅

𝑍
2)]

where , the change in the net variance explained by∆
𝑃𝐶1

= (𝑅
𝑃𝐶1+𝑍
2 − 𝑅

𝑍
2) − (𝑅

𝑃𝐶1+𝑃𝐺𝐼+𝑍
2 − 𝑅

𝑃𝐺𝐼+𝑍
2 )

PC1SES after controlling for PGISES. Hence, the percent change in SES-GMV association is roughly

the product of the percent change in PC1SES-GMV association ( ) and the∆
𝑃𝐶1

 / (𝑅
𝑃𝐶1+𝑍
2 − 𝑅

𝑍
2)

relative contribution of PC1SES in the overall SES-GMV association ( ).(𝑅
𝑃𝐶1+𝑍
2 − 𝑅

𝑍
2) / (𝑅

𝑃𝐶+𝑍
2 −  𝑅

𝑍
2)

A larger share of SES-GMV association can be attributed to PGISES if genetic factors linked to SES

play a bigger role for PC1SES-GMV association and/or if PC2SES contributes relatively less to the

overall SES-GMV association.

4.3.4. Measurement error correction for PGI

PGISES is a noisy proxy of true linear effects of common genetic variants that are linked to SES

because GWAS estimates of individual SNP effects are obtained from finite sample sizes. The

difference between the true PGI and the available PGI can be viewed as the classic measurement

error, which leads to an attenuation bias in the coefficient estimate for the PGISES. Nonetheless, it

is still possible to account for the linear effects of common genetic variants that the true PGISES

would capture under reasonable assumptions. We addressed this attenuation bias by using

genetic instrumental variable (GIV) regression (35). The essential idea is that the true PGISES can

be recovered from a noisy PGISES
(1) by using another PGISES

(2) as an instrumental variable that was

derived from a different GWAS sample. The crucial assumption here is that the noise in PGISES
(1)

and PGISES
(2) is uncorrelated to each other. GIV regression can address the measurement error in

PGISES to the extent that this assumption holds.
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To obtain PGISES
(1) and PGISES

(2), we randomly split the UKB GWAS sample into two

subsamples (N=105,517~170,945) such that each subsample has the same male-female ratio and

no individuals in one subsample are related to anyone in the other subsample with more than the

third degree of relatedness. With each subsample, GWAS was run for the five numerical SES

measures and the results were combined with Genomic SEM as described in Section 3.4. Then,

PGISES
(1) and PGISES

(2) were constructed from one of the two independent GWAS subsample results

in the main imaging sample.

Using PGISES
(1) and PGISES

(2), we fitted the model (4) by the GIV estimation, which is

two-stage least squares (TSLS).

(8) 𝐺𝑀𝑉
𝑖
𝑗 = β

~
1

𝑗
𝑃𝐶1
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𝑖
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~𝑗
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𝑖
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where is the PGI estimated from the first subsample. The first-stage equation can be𝑃𝐺𝐼
𝑖
(1)

written as:
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where the PGI estimated from the second subsample, , is used as an instrument for .𝑃𝐺𝐼
𝑖
(2) 𝑃𝐺𝐼

𝑖
(1)

We obtained the TSLS estimates by fitting the following equation:

(10) 𝐺𝑀𝑉
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where is the fitted value from the equation (8). The statistical inference was then conducted𝑃𝐺
^
𝐼

𝑖
(1)

but in the standard TSLS framework to test the association between the GMV and SES for each

voxel conditional on PGISES (61).

We computed Partial R2’s based on adding or excluding in model (10) instead of the𝑃𝐺
^
𝐼

𝑖
(1)

unadjusted PGI. Similarly, we measured the difference in SES-GMV association after controlling

for the PGI by GIV as [(𝑅
𝑃𝐶+𝑍
2 − 𝑅

𝑍
2) − (𝑅

𝑃𝐶+𝑃𝐺
^
𝐼(1)+𝑍

2 − 𝑅
𝑃𝐺

^
𝐼(1)+𝑍

2 )]  / (𝑅
𝑃𝐶+𝑍
2 − 𝑅

𝑍
2)

4.4. Functional annotations

We connected our anatomical findings to known functional localizations by leveraging Cognitive

Atlas and the extrapolatable meta-analysis tool NeuroQuery (36, 37). We first took the 518

cognitive concepts from Cognitive Atlas which were categorized into 11 functional categories.12

12 These concepts were taken from https://www.cognitiveatlas.org/concepts/categories/all on 2 July 2021.
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Then, for each concept, we generated a meta-analyzed Z-score brain map using NeuroQuery.

This toolbox allows users to generate a predictive MRI-derived spatial distribution for any term,

based on very large-scale meta-analyses containing mostly functional MRI studies. We excluded

12 concepts containing a term for which NeuroQuery failed to generate a brain map. As a result,

506 concepts remained. For each concept-associated brain-map, we calculated mean withχ2

voxels statistically significant at the FWE rate of 5% level in the VBM results. We used these mean

scores as a summary measure of associations between a given functional concept and theχ2

regions linked to SES. The full results are reported in Table S17.

5. Interpretation

5.1. Brain, SES, and genetics

To aid interpretation of the association between SES and brain anatomy observed in late

adulthood, the figure above describes a simple model that illustrates how adulthood brain

anatomy can be linked to SES, family environments, and genetics. The model is depicted in a

directed acyclic graph (DAG), a popular graphical framework for identifying confounding variables

(62–64). The model does not attempt to include all possibly relevant factors and mediating

pathways. Rather, its purpose is to identify what effects are potentially captured in the estimated

GMV-SES association in relation to genetics and family environments.

It is important to note that each arrow in the DAG represents a unidirectional causal

relationship between two variables (nodes). For instance, the arrow from “SES adult” to “Brain

adult” only indicates the environmental effect of adult SES on the adult brain. A path is a set of
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one or more arrows that connects multiple nodes. A path can be either open or closed. An open

path channels statistical associations, which can be closed by conditioning on a variable in the

middle. A path can be closed due to a collider, which is a variable that receives two arrows.

Conditioning on a collider opens up a closed path, which induces a collider bias.

Though fairly simple, the model is capable of describing key relevant pathways. First, child

brain development is determined by genetics and family environments (“Own genes → Brain

child” and “Family environment → Brain child”). Second, SES in adulthood is a function of

genetics, family environments, and child brain development (“Own genes → SES adult”, “Family

environment → SES adult”, and “Brain child → SES adult”). Third, the transition to the (late)

adulthood brain is partly influenced by adult SES (“Brain child → SES adult → Brain adult” and

“Brain child → Brain adult”). Therefore, the model describes the roles of both genetics and family

environments in causing differences in SES and the brain. Furthermore, the feedback between

SES and the brain is illustrated by the path: “Brain child → SES adult → Brain adult”. One could

extend the model by distinguishing late and early adulthood phases and including another

feedback effect. Such an extension, however, will not provide additional key insights as long as

socioeconomic mobility is limited during adulthood.

Another important feature is that the model recognizes so-called genetic nurture effects

(65). Childhood family environments shaped by the parents are known to be associated with the

genes of the parents (“Parental genes → family environment”), which are passed on to their child

(“Parental genes → Own genes”). These links induce statistical associations between own

genetics and family environments (“Own genes ← Parental Genes → family environment”). This

fact statistically blurs the common dichotomy between genetics and family environments.

In this study, we regressed voxel-level GMV on an adult SES measure with a goal to

estimate the SES-GMV association. If our aim were to estimate the causal effect of adult SES

environments on the GMV structure (i.e., “SES adult → Brain adult”), a resulting regression

estimate will clearly be biased due to the open confounding paths, which transmit statistical

associations. Therefore, the estimated SES-GMV associations in this study are expected to

encompass the direct environmental effect of adult SES on adult brain and all the effects due to

the open paths, which can be summarized as follows:

1) Environmental effects of adult SES on adult brain: SES adult → Brain adult
2) Brain causing SES: SES adult ← Brain child → Brain adult
3) Genetic effects: SES adult ← Own genes → Brain child→ Brain adult
4) Family environment effects: SES adult ← Family environment→ Brain child → Brain adult
5) Genetic nurture effects on brain: SES adult ← Own genes ← Parental genes → Family

environment → Brain child → Brain adult
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6) Genetic nurture effects on SES: SES adult ← Family environment ← Parental genes →
Own genes → Brain child → Brain adult

Notably, the DAG above demonstrates that one needs to account for either childhood

brain measures (i.e., lifetime longitudinal data) or measures of both family environments and

genetics in order to identify the causal effect of the adult SES on the brain (“SES adult → Brain

adult”), assuming the absence of no other unobserved confounders.

5.2. Interpretation of the polygenic index for SES

While statistical analysis using PGISES is straightforward, careful interpretations are required. Most

importantly, the remaining associations between the GMV and SES after conditioning on PGISES

cannot entirely be interpreted as environmental effects of SES on the brain anatomy because

PGISES only captures noisy estimates of the effects of measured common genetic variants. It does

not include the potential effects of structural or rare genetic variants that are not (or only partly)

captured by the observed common genetic variants. Nonetheless, the GMV-SES association that

is robust to controlling for PGISES can point to regions of the brain that are more likely to be

affected by environmental factors linked with SES.

To interpret the results, we first need to probe what effects are likely to be summarized in

PGISES. On the basis of the DAG presented above, the GWAS of SES will capture the direct

genetic effects on SES (“Own genes → Brain child → SES adult” and “Own genes→ SES adult”)

as well as the effects due to confounders, namely genetic nurture effects (“Own genes← Parental

genes → Family environment → SES adult” and “Own genes ← Parental genes → Family

environment→ Brain child → SES adult”). All of these effects will therefore be incorporated in

PGISES. Furthermore, it is important to note that the paths via the adult brain will not be captured in

PGISES due to the adult brain being a collider: “Own genes → Brain child → Brain adult ← SES

adult”.

These observations lead to the following interpretations for the SES-GMV association

estimates conditional on PGISES. First and most importantly, PGISES is expected to capture a part

of the SES-GMV association due to different family environments and parental SES. A PGI

captures the association between a phenotype and genetic variants, rather than causal effects of

genetic variants. For this reason, PGISES will contain genetic nurture effects as described above.

Studies have shown that such genetic nurture effects tend to be larger for socio-economic

phenotypes (65, 66). Therefore, PGISES is likely to overstate the genetic effects associated with

SES.

Second, what we effectively control for by controlling for PGISES is the shared genetic

architecture between SES and developmental neuroanatomy that is captured by the measured
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genetic variants and their estimated linear associations with SES. Hence, controlling for PGISES is

not necessarily equivalent to controlling for the entire common genetic variants behind the

GMV-SES association. More specifically, in light of the DAG, PGISES will account for the following

genetic effects on SES: “Own genes → SES adult” and “Own genes→ Brain child→ SES adult”,

the latter of which works via the child brain. On the other hand, PGISES will not account for the

genetic effects on the adult brain that do not work through adult SES: “Own genes→ Brain child

→ Brain adult”. In fact, in order to account for the underlying genetic effects in the SES-GMV

association, it would be required to construct a PGI for a brain IDP conditional on adult SES.

However, it is currently difficult to construct such a PGI with sufficient predictive power due to a

limited sample size available for conducting a required GWAS. Moreover, such a PGI will need to

be constructed for each IDP representing a sufficiently narrow region.

Despite these challenges for interpretation, PGISES is still useful for identifying brain regions

likely to be more susceptible to the influence of socio-economic environments than that of genetic

factors. If the estimated SES-GMV association is relatively less attenuated after controlling for

PGISES, the observed SES-GMV association is likely to be a result of environmental effects of SES

rather than genetic factors. One reason is because PGISES tends to overestimate the effects of

common genetic variants on SES. Also, at least for healthy individuals, it is highly unlikely that the

SES-GMV association is dominantly driven by rare or structural genetic variants with only

negligible contribution from common genetic variants associated with SES.

6. Supplementary analyses

6.1. Heritability and genetic correlation

We estimated SNP-based heritability of SES, TIV, and the brainwide GMV scores as well as their

pairwise genetic correlation, using genomic-relatedness-based restricted maximum likelihood

(GREML) estimation (67, 68). The method estimates the genetic contribution to the phenotypic

variance based on a linear mixed model, where the genetic effects are modelled as random. Its

extension to a bivariate model estimates genetic correlation between two phenotypes.

We randomly dropped one of a pair of individuals with estimated relatedness greater than

0.05, which resulted in N = 20,447 (69). We used a slightly pruned set of the SNPs used to

construct PGISES with the following pruning parameters: window size = 1,000 variant counts, step

size = 5, = 0.95. As a result, 452,190 SNPs were included. As covariates, we included age,𝑟2

age2, age3, sex, interaction terms between the sex and age terms, genotyping array indicator, and

top 40 genetic PCs. The estimation was implemented in BOLT-REML (70).
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The results are reported in Table S5. TIV and the GMV score for PC1SES were both partly

heritable (h2 = 0.41, SE = 0.02; and h2 = 0.28, SE = 0.02, respectively). PC1SES was moderately

heritable (h2 = 0.16, SE = 0.02) and positively genetically correlated with TIV (rg = 0.37, SE = 0.06).

Furthermore, PC1SES had a moderate genetic correlation with the values of the brainwide GMV

score that we constructed for PC1SES (rg = 0.57, SE = 0.06). Similar estimates for PC2SES and GMV

score for PC2SES were either smaller or had much larger standard errors (h2 = 0.05, SE = 0.02 for

PC2SES; h2 = 0.14, SE = 0.02 for GMV score; rg = 0.18, SE = 0.10 with TIV; rg = 0.34, SE = 0.18

with the GMV score). Overall, these results demonstrate that the genetic architectures of SES and

brain structure are partly overlapping.

6.2. Testing differences in residual SES-GMV associations due to BMI

As presented in Figure 3C and 3D, the remaining SES-GMV associations after controlling for

PGISES can be substantially attributed to individual differences in BMI. Here we formally tested

whether this is the case statistically. In other words, we tested whether there is a statistically

significant change in at least one of the coefficients for PC1SES and PC2SES after accounting for

BMI in addition to PGISES. The testing procedure was analogous to the one conducted for PGISES,

which is described in Section 4.3.2, except that GIV regression was used to estimate each model.

As it was done for PGISES, we conducted this test only for the voxels that had significant

association with the PCs and then the multiple testing was corrected for using Bonferroni

correction. As a result, we found that 84.4% of 34,188 voxels tested had a significant change in at

least one of the coefficients for PC1SES and PC2SES after controlling for BMI in addition to PGISES.

This result confirms that BMI can indeed explain the remaining SES-GMV associations after

adjusting for PGISES.

Note that, to measure the contribution of BMI in explaining the remaining SES-GMV

associations after controlling for PGISES, we again used the relative change in the net variation

explained by the SES PCs. Hence, following the same logic, we computed the contribution of BMI

as:

[(𝑅
𝑃𝐶+𝑃𝐺

^
𝐼(1)+𝑍

2 − 𝑅
𝑃𝐺

^
𝐼(1)+𝑍

2 ) −  (𝑅
𝑃𝐶+𝑃𝐺

^
𝐼(1)+𝐵𝑀𝐼+𝑍

2 − 𝑅
𝑃𝐺

^
𝐼(1)+𝐵𝑀𝐼+𝑍

2 )]  / (𝑅
𝑃𝐶+𝑃𝐺

^
𝐼(1)+𝑍

2 − 𝑅
𝑃𝐺

^
𝐼(1)+𝑍

2 )

6.3. Heterogeneity

Sex and age are two important factors for both SES and neuroanatomy. Therefore, we tested

whether the SES-GMV associations are heterogeneous with respect to i) different sex (sex

interaction) and ii) different ages (age interaction). We examined each aspect of heterogeneity

separately by using the voxel clusters and including the interaction terms with PC1SES and PC2SES.

The interaction terms were then tested jointly with F-tests.
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The results are reported in Table S23-24. The SES-GMV associations were generally larger

for men, with the largest difference found in the biggest cluster from the prefrontal cortex. One

exception was found in a small cluster in the cerebellum, where the SES-GMV association was

larger for women. However, none of the regions would survive the brainwide multiple testing

correction. The SES-GMV associations also tended to increase with age, while the age interaction

estimates were not large enough to be statistically significant even at the uncorrected 5% level,

except for one cluster from the anterior insular and the frontal operculum. These null results for

age interaction may be due to the survival effect because the majority of the participants were

older than 60.

6.4. Controlling for alcohol consumption

Our baseline analyses implicitly adjusted for heavy drinking by excluding heavy drinking

individuals. A recent study has shown that even moderate alcohol consumption is associated with

reduction in GMV even when educational attainment is adjusted for (42). Since alcohol drinking

behavior is known to be related to SES, it may be hypothesized that the alcohol consumption is a

factor that constitutes the observed SES-GMV associations. However, because individuals with

high SES tend to consume a greater amount of alcohol (71), controlling for the alcohol

consumption is expected to only increase estimates for the SES-GMV associations.

Our data confirms that this is indeed the case. In a cluster-based analysis, we controlled

for the alcohol consumption (the number of drinks per week) with linear and square terms. The

results show that the SES-GMV associations measured in partial R2 increased by up to 31%, but

only marginally in general (Table S25). Therefore, our positive estimates for the SES-GMV

associations cannot be directly attributed to the alcohol consumption. Rather, when not adjusted

for, the alcohol intake is a factor that reduces the GMV difference between high and low SES

individuals.

7. Supplementary discussion

Our results quantify the extent to which SES could be an underlying cause or a confounding factor

in brain imaging studies concerned with cognitive health or behavior. Furthermore, the modest

effect sizes we found for specific brain regions imply that large sample sizes are required to

identify robust neuroanatomical associations with SES. For example, a sample size of N > 1,200

or N > 2,800 is required for obtaining 90% statistical power to detect even the largest effect we

found (partial R2 = 1.3%) at p-values of 0.01 or 2⨉10-6, respectively. The effect sizes reported in

this paper are far smaller than typically reported in smaller-scale studies in the past. Due to their
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small sample size, some of the past reports may be inflated estimates that suffer the winner’s

curse (11).

Importantly, small effect sizes for individual voxels do not necessarily imply that the

association between SES and brainwide GMV structure is also negligible. The brainwide GMV

score we constructed was able to predict almost 5% of the out-of-sample variation of SES. The

predictive accuracy of the score can be further improved with a larger training sample.

Furthermore, this result suggests that the overall association between SES and GMV will be far

from being modest if it is estimated in-sample.

Of note, the modest effect sizes can partly be due to the fact that the UKB participants

generally hold a higher SES than the general British population (72). As Fig S6 suggests,

SES-GMV associations are likely to be larger for lower SES individuals and therefore our results

may underestimate the true SES-GMV association size for the general population. Furthermore, in

order to identify robust SES-GMV association, we excluded individuals who were clinically

diagnosed with a brain disease, morbidly obese, and heavy-drinking. Such sample exclusion

criteria can attenuate the estimates since these traits are known or likely to be negatively

associated with both SES and GMV. Fig S12 demonstrates that this was indeed the case.
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Fig. S1. Average grey matter volume over acquisition dates by week 

Site-specific weekly averages of grey matter volume are plotted over acquisition dates for the right superior frontal gyrus and the right thalamus. These regions are selected as examples 

and there are other regions showing similar patterns.      
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Fig. S2. Scatter plots of top principal components (PC) for socioeconomic status (SES) 

Top four PCs for SES are plotted with color indicating different levels of selected socioeconomic measures.   
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Fig. S3. Eigenvalues from the principal component analysis of socioeconomic indicators   
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A.  
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B. 

Fig. S4. Voxel-based morphometry of grey matter volume and socioeconomic status (SES) 

Univariate voxel-based morphometry results on the two principal components (PC) for SES.  

A. Each figure plots the association sizes measured in partial R2 for only the voxels significant at FWE rate of 5%. MNI coordinates are indicated. 

B. Partial R2 (%) for two SES PC is plotted for only the voxels that were significant at FWE rate of 5% and had partial R2>0.17%.   
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Fig. S5. Voxel-based morphometry of grey matter volume and various socioeconomic measures 

Univariate voxel-based morphometry results, with grey matter volume as the dependent variable and each of the five socioeconomic measures as the explanatory variable. Each figure 

plots the association sizes measured in partial R2 for only the voxels significant at FWE rate of 5%. MNI coordinates are indicated. N = 30,954 (a), 27,307 (b), 29,839 (c), 29,006 (d), 

28,405 (e)  
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Fig. S6. Stratified analyses on low and high socioeconomic status groups 

Results from baseline voxel-based morphometry analysis conducted separately on low and high socioeconomic status (SES) groups as well as the pooled sample. Each figure plots the 

association sizes measured in partial R2 for only the voxels significant at FWE rate of 5%. High and low SES groups were defined by National Statistics Socio-economic Classification 

(high if holding a managerial, administrative, or professional occupation). MNI coordinates are indicated.  
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B. 

Fig. S7. Standardized effect sizes of associations between socioeconomic status (SES) and  grey matter volume (GMV) in voxel clusters 

Results from regressing GMV in each cluster on PC1SES and PC2SES. Total intracranial volume was not controlled for in A. but in B.  On the left, partial R2 from both PC1SES and 

PC2SES are reported and, on the right, the standardized coefficient estimates are plotted with their uncorrected 95% confidence intervals. The clusters were formed with at least 200 

voxels showing significant associations at FWE rate of 5% level in the baseline TIV-adjustd voxel-based morphometry (VBM) results on PC1SES and PC2SES. For each cluster, the 

anatomical location of the peak voxel from the VBM results is indicated. See Table S8 for more information about the clusters.  
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Fig. S8. Standardized effect sizes of associations between various socioeconomic measures and grey matter volume (GMV) in voxel clusters 

Results from regressing GMV in each cluster on each of the socioeconomic measures separately. The standardized coefficient estimates (grey points) are plotted with their uncorrected 

95% confidence intervals (color bars). The clusters were formed with at least 200 voxels showing significant associations at FWE rate of 5% level in the baseline voxel-based 

morphometry (VBM) results on PC1SES and PC2SES. The clusters are ordered by the strength of joint associations with PC1SES and PC2SES. For each cluster, the anatomical location of 

the peak voxel from the VBM results is indicated at the bottom. See Table S8 for more information about the clusters.   
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Fig. S9. Standardized effect sizes of TIV-unadjusted associations between various socioeconomic measures and grey matter volume (GMV) in voxel clusters 

Results from regressing GMV in each cluster on each of the socioeconomic measures separately while not controlling for total intracranial volume (TIV). The standardized coefficient 

estimates (grey points) are plotted with their uncorrected 95% confidence intervals (color bars). The clusters were formed with at least 200 voxels showing significant associations at 

FWE rate of 5% level in  the baseline voxel-based morphometry (VBM) results on PC1SES and PC2SES. The clusters are ordered by the strength of joint associations with PC1SES and 

PC2SES. For each cluster, the anatomical location of the peak voxel from the VBM results is indicated at the bottom. See Table S8 for more information about the clusters.   
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Fig. S10. Standardized effect sizes of associations between socioeconomic status (SES) and  grey matter volume (GMV) in voxel clusters with additional controls 

Results from regressing GMV in each cluster on PC1SES and PC2SES while additionally controlling for PGISES and BMI. The standardized coefficient estimates (grey points) are plotted 

with their uncorrected 95% confidence intervals (color bars). The sample was restricted to individuals of European ancestry. Measurement error in PGISES is adjusted for with genetic 

instrument variable (GIV) regression. The clusters were formed with at least 200 voxels showing significant associations at FWE rate of 5% level in  the baseline voxel-based 

morphometry (VBM) results on PC1SES and PC2SES. The clusters are ordered by the strength of joint associations with PC1SES and PC2SES. For each cluster, the anatomical location of 

the peak voxel from the VBM results is indicated at the bottom. See Table S9 for more information about the clusters.  
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Fig. S11. Grey-matter neuroanatomical correlations of various measures  

The figure plots pairwise Pearson correlations computed from T-statistics of univariate grey-matter VBM results for each measure. The upper triangle reports the correlations of the T-

statistics from the VBM analyses that adjusted for total intracranial volume (TIV), while the lower triangle from those that did not adjust for TIV.   
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Fig. S12. Standardized effect sizes of associations between socioeconomic status and grey matter volume (GMV) in voxel clusters with and without morbidly obese and heavy 

drinking individuals 

Results from regressing GMV in each cluster on PC1SES and PC2SES with and without morbidly obese and heavy drinking individuals. The standardized coefficient estimates (grey 

points) are plotted with their uncorrected 95% confidence intervals (color bars). The clusters were formed with at least 200 voxels showing significant associations at FWE rate of 5% 

level in the baseline voxel-based morphometry (VBM) results on PC1SES and PC2SES. The clusters are ordered by the strength of joint associations with PC1SES and PC2SES. For each 

cluster, the anatomical location of the peak voxel from the VBM results is indicated at the bottom. See Table S8 for more information about the clusters.  
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Fig. S13. Standardized effect sizes of associations between socioeconomic status and grey matter volume (GMV) in voxel clusters with and without acquisition date and time 

as control variables 

Results from regressing GMV in each cluster on PC1SES and PC2SES with and without the acquisition date and time as control variables. The standardized coefficient estimates (grey 

points) are plotted with their uncorrected 95% confidence intervals (color bars). The clusters were formed with at least 200 voxels showing significant associations at FWE rate of 5% 

level in the baseline voxel-based morphometry (VBM) results on PC1SES and PC2SES. The clusters are ordered by the strength of joint associations with PC1SES and PC2SES. For each 

cluster, the anatomical location of the peak voxel from the VBM results is indicated at the bottom. See Table S8 for more information about the clusters.  
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Fig. S14. Voxel-based morphometry (VBM) of body mass index (BMI) 

Univariate VBM results on BMI, with grey matter volume (GMV) as the dependent variable. The Beta estimates are plotted for voxels significant at FWE rate of 1% level with partial 

R2>0.02%. The Beta estimates are reported in the standard deviation unit of GMV. MNI coordinates are indicated. 
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Table S1 Descriptive statistics 

Variable Stats / Values Frequency Graph Valid 

Year or birth 

[integer] 

Mean (sd) : 1954.4 (7.1) 

min < med < max: 

1937 < 1954 < 1970 

IQR (CV) : 11 (0) 

34 distinct values 

 

23931 

(100.0%) 

Year of assessment 

[factor] 

1. 2014 

2. 2015 

3. 2016 

4. 2017 

5. 2018 

6. 2019 

1180 ( 4.9%) 

3138 (13.1%) 

3227 (13.5%) 

4224 (17.7%) 

6132 (25.6%) 

6030 (25.2%) 
 

23931 

(100.0%) 

Age 

[numeric] 

Mean (sd) : 62.4 (7.2) 

min < med < max: 

44 < 63 < 81 

IQR (CV) : 11 (0.1) 

38 distinct values 

 

23931 

(100.0%) 

Sex 

[factor] 

1. Female 

2. Male 

12613 (52.7%) 

11318 (47.3%) 
 

23931 

(100.0%) 

European ancestry 

[factor] 

1. No 

2. Yes 

3132 (13.1%) 

20799 (86.9%) 
 

23931 

(100.0%) 

SES PC1 

[numeric] 

Mean (sd) : 0 (1) 

min < med < max: 

-4.6 < 0.1 < 2.7 

IQR (CV) : 1.4 (-5.64027e+16) 

23876 distinct 

values 

 

23931 

(100.0%) 

SES PC2 

[numeric] 

Mean (sd) : 0 (1) 

min < med < max: 

-5.6 < 0 < 3.3 

IQR (CV) : 1.3 (-5.166366e+16) 

23876 distinct 

values 

 

23931 

(100.0%) 

Occupation (SEC) 

[factor] 

1. Higher managerial, administrative, 

professional 

2. Lower managerial, administrative, 

professional 

3. Intermediate 

4. Routine and manual 

7272 (30.4%) 

8339 (34.8%) 

5022 (21.0%) 

3298 (13.8%) 
 

23931 

(100.0%) 
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Years of schooling 

[numeric] 

Mean (sd) : 16.4 (4.2) 

min < med < max: 

7 < 20 < 22 

IQR (CV) : 7 (0.3) 

16 distinct values 

 

23867 

(99.7%) 

Occupational hourly 

wage 

[numeric] 

Mean (sd) : 19.6 (8.6) 

min < med < max: 

6.8 < 18.2 < 76.2 

IQR (CV) : 11.4 (0.4) 

613 distinct 

values 

 

23931 

(100.0%) 

Household income 

[factor] 

1. < 18K 

2. 18K to 30,999 

3. 31K to 51,999 

4. 52K to 100K 

5. > 100K 

2760 (11.5%) 

6330 (26.5%) 

7302 (30.5%) 

5762 (24.1%) 

1777 ( 7.4%) 
 

23931 

(100.0%) 

Local average 

income 

[numeric] 

Mean (sd) : 756.3 (185.8) 

min < med < max: 

350 < 730 < 1730 

IQR (CV) : 230 (0.2) 

111 distinct 

values 

 

23931 

(100.0%) 

Housing 

[factor] 

1. Own outright 

2. Own with a mortgage 

3. Rent, public 

4. Rent, private 

5. Pay part rent and part mortgage 

6. Free rent 

17854 (74.6%) 

5094 (21.3%) 

343 ( 1.4%) 

482 ( 2.0%) 

60 ( 0.3%) 

98 ( 0.4%) 
 

23931 

(100.0%) 

Alcohol intake 

[numeric] 

Mean (sd) : 7 (5.9) 

min < med < max: 

0 < 6 < 24 

IQR (CV) : 9 (0.8) 

25 distinct values 

 

23931 

(100.0%) 

BMI 

[numeric] 

Mean (sd) : 25.9 (3.5) 

min < med < max: 

13.4 < 25.6 < 35 

IQR (CV) : 5 (0.1) 

13485 distinct 

values 

 

23931 

(100.0%) 

Scanning site 

[factor] 

1. Cheadle 

2. Reading 

3. Newcastle 

16293 (68.1%) 

3135 (13.1%) 

4503 (18.8%) 
 

23931 

(100.0%) 
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Image quality rating 

[numeric] 

Mean (sd) : 84.8 (1.4) 

min < med < max: 

71 < 85.2 < 87 

IQR (CV) : 1.3 (0) 

901 distinct 

values 

 

23931 

(100.0%) 

Total intracranial 

volume 

[numeric] 

Mean (sd) : 1531.9 (145.1) 

min < med < max: 

993.3 < 1523.3 < 2286.9 

IQR (CV) : 206.2 (0.1) 

23930 distinct 

values 

 

23931 

(100.0%) 

SES Polygenic index 

[numeric] 

Mean (sd) : 0 (1) 

min < med < max: 

-4 < 0 < 4.4 

IQR (CV) : 1.4 (2.060389e+17) 

20267 distinct 

values 

 

20799 

(86.9%) 
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