## Part 3. Prepare reference data list (including solo_WCGW CpG and TF-bound G4) library(tidyr) library(dplyr) library(readr) library(parallel) library(openxlsx) library(GenomicRanges) library(ArchR) library(patchwork) # Clock loci read_tsv('/gpfs/output/ECS_Research/data/G4_Aging/DNAm/non_TFBS/solo_WCGW_inCommonPMDs_mm10.bed.gz',col_names=c('chr','start','end')) %>% makeGRangesFromDataFrame() -> ref_solo_wcgw_gr ## TFBS DNAm calculated_motif_overlapping_peak_regions <- readRDS('/gpfs/output/ECS_Research/data/G4_Aging/DNAm/TFBS/TFBS.overlapping.peak.positions.for.each.peakSet.mm10.rds') TF_negative_union_list <- readRDS('/gpfs/output/G4AMP/bin/TF_negative_union_selected.20230522.rds') DNAm_analysis_reference_data = list( clock_reference = list( 'Clock_Solo_WCGW_gr' = ref_solo_wcgw_gr ), TFBS_reference = list( 'pGQSpos' = calculated_motif_overlapping_peak_regions[['pGQSpos']], 'pGQSneg' = calculated_motif_overlapping_peak_regions[['pGQSneg']], 'pGQSpos_aging' = calculated_motif_overlapping_peak_regions[['pGQSpos_aging']], 'pGQSneg_aging' = calculated_motif_overlapping_peak_regions[['pGQSneg_aging']], 'TF_tumor_specific_negative_selected' = TF_negative_union_list ) ) saveRDS(DNAm_analysis_reference_data,file='/gpfs/output/ECS_Research/data/G4_Aging/DNAm/DNAm_analysis_reference_data.for.mm10.rds')