data: time_steps: 5 chip_dims: 128 # channels: "(WV):blue|green|red" channels: "blue|green|red" window_space_scale: 10GSD input_space_scale: 10GSD output_space_scale: 10GSD batch_size: 16 chip_overlap: 0 dist_weights: 0 min_spacetime_weight: 0.5 neg_to_pos_ratio: 0.25 normalize_inputs: true normalize_perframe: false resample_invalid_frames: true temporal_dropout: 0. time_sampling: hardish3 time_span: 6m upweight_centers: true use_centered_positives: false use_grid_positives: true verbose: 1 max_epoch_length: 3200 mask_low_quality: true model: class_path: watch.tasks.fusion.methods.HeterogeneousModel init_args: token_width: 8 token_dim: 64 position_encoder: class_path: watch.tasks.fusion.methods.heterogeneous.MipNerfPositionalEncoder init_args: in_dims: 3 max_freq: 3 num_freqs: 16 backbone: class_path: watch.tasks.fusion.architectures.transformer.TransformerEncoderDecoder init_args: encoder_depth: 10 decoder_depth: 0 dim: 160 queries_dim: 96 logits_dim: 64 latent_dim_head: 256 spatial_scale_base: 1.0 temporal_scale_base: 0.5 global_change_weight: 0.0 global_class_weight: 0.0 global_saliency_weight: 1.0 saliency_loss: dicefocal decoder: simple_conv optimizer: class_path: torch.optim.Adam init_args: lr: 1e-4 weight_decay: 1e-4 betas: - 0.9 - 0.99 # lr_scheduler: # class_path: torch.optim.lr_scheduler.OneCycleLR # init_args: # max_lr: 0.001 # total_steps: 10000 # anneal_strategy: "linear" # pct_start: 0.5 profile: false seed_everything: 1234 trainer: accumulate_grad_batches: 8 callbacks: # - class_path: watch.utils.lightning_ext.callbacks.AutoResumer # - class_path: pytorch_lightning.callbacks.ModelCheckpoint # init_args: # monitor: val_class_f1_macro # mode: max # save_top_k: 5 # auto_insert_metric_name: true - class_path: pytorch_lightning.callbacks.ModelCheckpoint init_args: monitor: val_loss mode: min save_top_k: 5 auto_insert_metric_name: true check_val_every_n_epoch: 1 enable_checkpointing: true enable_model_summary: true enable_progress_bar: true # gradient_clip_algorithm: norm # gradient_clip_val: 0.5 log_every_n_steps: 5 logger: true max_steps: 50000 num_sanity_val_steps: 2 replace_sampler_ddp: true track_grad_norm: 2