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ABSTRACT

Epigenetic aging clocks have been widely used to validate rejuvenation effects during cellular
reprogramming. However, these predictions are unverifiable because the true biological age of
reprogrammed cells remains unknown. We present an analytical framework to consider rejuvena-
tion predictions from the uncertainty perspective. Our analysis reveals that the DNA methylation
profiles across reprogramming are poorly represented in the aging data used to train clock models,
thus introducing high epistemic uncertainty in age estimations. Moreover, predictions of different
published clocks are inconsistent, with some even suggesting zero or negative rejuvenation. While
not questioning the possibility of age reversal, we show that the high clock uncertainty challenges the
reliability of rejuvenation effects observed during in vitro reprogramming prior to pluripotency and
throughout embryogenesis. Conversely, our method reveals a significant age increase after in vivo
reprogramming. We recommend including uncertainty estimation in future aging clock models to
avoid the risk of misinterpreting the results of biological age prediction.

Keywords Rejuvenation - cell reprogramming - epistemic uncertainty - epigenetic aging clocks - dataset shift - DNA
methylation

Introduction

Reprogramming aged somatic cells into pluripotency or other progenitor states was consistently shown to ameliorate
various aging-associated features, either by applying different transcription factors (TFs) or by introducing small
molecules [1HS]. To quantify the effect of age reversal, researchers resort to various methods, including the so-called
“epigenetic aging clock” models built from DNA methylation (DNAm) data with diverse machine learning (ML)
approaches. These approaches are widely employed to compare the “biological age” of reprogrammed cells to that
of control cells [6] (Fig. [Ip,b). These clocks are easy to use and can assess aging from the organismal to the cellular
levels, which is particularly valuable in experiments where the large-scale parameters of organismal aging cannot be
measured, such as in vitro cellular reprogramming. Notably, a similar approach has recently been used to demonstrate
rejuvenation in the course of embryonic development [[7H9].

The primary assumption of aging clocks is that the deviation A of predicted age from the chronological age C represents
an accelerated or decelerated aging, that is, an increase or decrease in the biological age B [10l [11]]. One can express it
as B = C'+ A. Since biological age cannot be measured directly (i.e., it lacks a definitive “ground truth”), the epigenetic
age estimated by the clocks is therefore considered a proxy measure of the biological age [12]. Consequently, owing to
the fact that DNAm patterns are strong indicators of past influences and future health outcomes, the epigenetic age is
proposed to serve as a biomarker for measuring the effects of pro-longevity interventions in clinical trials [10} 13} [14].

However, before aging clocks could be integrated into clinical practice, these models should provide an estimate of
uncertainty for their own predictions. Uncertainty manifests itself in three ways [[15,[16]: (i) Model choice uncertainty,
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part of a broader category known as epistemic uncertainty, represents how well a proposed model (its architecture,
parameters, metrics, etc.) reflects the actual underlying process (Fig. Eﬁ). (i1) Out-of-distribution (OOD) uncertainty,
another type of epistemic uncertainty, emerges when the testing data do not represent the training data distribution,
leading to a high risk of model prediction failure (Fig. [Id). (iii) Aleatoric uncertainty originates from data variations
that cannot be reduced to zero by the model (e.g., when the same DNAm level corresponds to different ages) (Fig. [Tg).

Dataset shift [17] term describes the case of OOD sampling where the testing population is under-represented within the
training distribution. Dataset shift can be decomposed into covariate shift (e.g., differently distributed DNAm values)
and response shift (e.g., different age ranges). Notably, batch effect serves as a notorious example of dataset shift in
the field of omics data analysis because it indicates differences in covariate or response distributions between sample
groups.

From the clinical perspective, epistemic uncertainty must be estimated to make reliable conclusions about whether
to trust a model or not [[15]]. Specifically, epistemic uncertainty resulting from the dataset shift should be scrutinized,
considering the prevalence of batch effects in biological data [18} [19]. However, most popular DNAm aging clocks fail
to meet this criterion (Fig. [Tf) because they are typically built using algorithms from the penalized multivariate linear
regression (MLR) family [20] (e.g., ElasticNet). Such algorithms do not yield information on any of the uncertainties,
except for the error between chronological and predicted ages in the training data (e.g., mean or median absolute errors,
MAE or MedAFE).

In this work, we question the applicability of existing aging clock methodology for measuring rejuvenation by
specifically examining prediction uncertainty (Fig. [I). To achieve this, we reanalyze published data of putative
rejuvenation, focusing on extreme cases of anticipated dataset shift, such as cellular reprogramming and embryonic
development.

Because biological age measurements cannot be verified explicitly, we introduce four different indirect approaches to this
problem: (i) Elucidating covariate shift in DNAm values between the datasets of aging and rejuvenation. (ii) Evaluating
the agreement between different aging clocks in predicting rejuvenation. (iii) Exploring if rejuvenation datasets can be
employed reciprocally to predict normal aging. (iv) Assessing whether an aging clock capable of estimating its own
uncertainty (Fig. [Tig) would demonstrate a significant age reversal in putative rejuvenation experiments.

We propose a comprehensive framework for implementing these approaches. By leveraging this framework, we aim to
elucidate the most critical limitations in applying aging clock models to rejuvenation studies, which should be solved in
order to drive broader acceptance of these models within the longevity community.

Results

Covariate shift can lead to biologically meaningless predictions

To introduce the concept of covariate shift in the field of aging clocks, we first explored a simple, low-dimensional
example. In particular, we used two parameters (biomarkers) to construct an elementary aging clock for predicting
chronological age in humans: weight and height (Fig. [2h; see Methods). These two biomarkers strongly correlate
with age during the first twenty years of human life [21]], therefore they can legitimately be used for age prediction.
We analyzed the data of body measurements for male humans ranging from 1 to 25 years old (an approximate end of
body growth), including both healthy controls [21] and individuals with the achondroplasia disorder [22| 23] typically
characterized by a shorter length of arms and legs [24].

Inspired by the common framework of aging clocks construction established in earlier works [25-H27]], we trained a
multivariate linear regression (MLR) model using body measurements of a cohort of healthy individuals to predict
their chronological age, which yielded a good performance on the training data (M AE=2.3 years, R?=0.84). For
the achondroplasia cohort, these clocks predicted consistently lower ages (Fig. [2p), which would be viewed as
decelerated aging in the context of other aging clocks. However, this interpretation has no biological support because
the average lifespan of people with achondroplasia is around 10 years shorter than that of control individuals due to
early-life mortality [24]]. We assume that this underestimation of ages in the achondroplasia cohort is caused by a
covariate shift in the analyzed data leading to a huge OOD uncertainty, which is not taken into account by the model.
Indeed, the distributions of covariates (weight and height) differs significantly between the training and the testing
data (Kolmogorov-Smirnov (KS) test, P value<0.0003; Fig. E}a). In general, any significant differences between the
observed distributions in training and testing samples should caution us against the casual application of ML models.

Next, we expanded our analysis beyond this simplistic case to examine various DNA methylation datasets and to
thoroughly investigate possible covariate shifts in the context of epigenetic aging clocks.
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Figure 1: Prediction uncertainty is an essential component for clinically relevant aging clocks. a, A common
pipeline for testing rejuvenation effect using epigenetic aging clocks. b, Current aging clocks estimate biological age
during the reprogramming process; however, they lack epistemic uncertainty quantification. ¢, By selecting a model to
make predictions from data, a researcher implicitly introduces model uncertainty. d, Out-of-distribution uncertainty
arises when the testing data samples are not represented in the training distribution. e, Aleatoric uncertainty comes
from the intrinsic variability in data, e.g. when the same level of a feature corresponds to different ages. f, None of
the existing aging clocks estimates epistemic uncertainty. g, We propose to use aging clocks capable of predicting
uncertainty, which could mitigate the potentially erroneous effects of clock predictions on clinical decision-making.


https://doi.org/10.1101/2023.12.01.569529
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.01.569529; this version posted December 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A PREPRINT - DECEMBER 30, 2023

( \
. . . . . . —~
a 2004 b © Control cohort o (]
20 © Achondroplasia cohort 90080
A 2 ®° g 2080 @
zg 00 500988y 2000
1014 (25 1604 o 780
3 015 O A
3 g 0 07,0, °
140 > 0,7 @
" o O’ PO, S30g0 0
5 2 o ® &% 6,6 Boo @ %8 B, ©
5120 { < &P % b0 O 850
: A SRR E
J 2 0 0 o
208§ 100 2 ogo 8 %bg&‘@oQ?odycﬁ °
£l el o
154 = 804
ERS 8.9, &o [ @
3N o
101 (8% 60 @8% °
s B0 °
54 |§ © Control cohort 1 o ?
< a0 O Achondroplasia cohort ° o
0 20 40 60 80 100 120 0 s 10 15 20 25
_ Weight True Age, years
( €gl0729426, 923606718, Histogram of Kolmogorov-Smirnov test
C The same aging skin dataset from Roos et. al., 2017 d P-val=1.00e+00 P-val=1.00e+00 e BH-adjusted p-values for Horvath skin sites
T
2.04 80 :
4+ 10 i 1
1.5 70 350 !
1
0 i i 1
1.0 60 g 5 300 !
R s0 | > 3 ]
g 0.5 1 & 0 T 0-7 T 8‘ 25071 !
& q0-L1< €g23995914, cg04875128, !
&o.04 ) P-val=1.00e+00 P-val=1.00e+00 . 200 H
o 8 1
7.5 7.5 € 1
=0.54 70 S 150 1
= 1
5.0 5.0 1
—1.0 60 100 1
E 2.5 25 i
—1.54 o o 227 =h !
43 © Aging skin train (Roos, 2017) |3 £ 501 :
Aging skin test (Roos, 2017 S 0.0 0.0 1
—2.0 O Aging ( ) 40 (o) T i (I) T o I I I | I
_'3 _'2 _'1 (') i é é CpG methylation beta value 0.0 05 1.0 1.5 2.0 25
PCAL: 59% ’ D Agingskintest @ Aging skin train l KS test, -log10(adj.P-value)
) . . cgl0729426, cg23606718, Histogram of Kolmogorov-Smirnov test
Two different aging sking datasets g P-val=5.01e-05 P-val=8.53e-09 BH-adjusted p-values for Horvath skin sites
44 80 T
4 104 1
34 60 80 - i
1
[ 24 B 1
24 a0 |8 i
y 60
g & o T 0 T 8 !
'S 20 < €g23995914, cgl0501210, ot 1
- P-val=4.07e-12 P-val=1.30e-13 ® 1
§ g '
0 o i 1
9 80 75 6 ;E: 20 !
=] 1
14 70 5.0 ol = :
» 1
. 60 £ 25 5 204
© Aging skin train (Roos, 2017) 50 £
O Aging skin train (Vandiver, 2015) g 0.0-7 T 07 T I I
=31 T T T T T T T 10 i - 9 & 0-
3 . 0 1 2 3 CpG methylation beta value g A A 2 o e
PCAL: 44% [ O Aging skin (Vandiver) @ Aging skin (Roos) ] KS test, -log10(adj.P-value)
. . cgl0729426, €g23606718, Histogram of Kolmogorov-Smirnov test
I . Aging and reprogramming datasets = P-val=1.06e-31 P-val=4.86e-08 BH-adjusted p-values for Horvath skin sites
> T
3S 104
o) 1754
&
2 £ 5
g 5 150
i
o %)
14 = O 125
S g ol T 0- r &
3 L4 €g23995914, 910501210, sl
& P-val=2.63e-18 P-val=3.89e-98  © 100
6 o7 (o] 80 204 8
o 7.5 g 75 4
70 aad =
17 : 10 50
60 (2
o'y & 2.5
—5d © Aging skin train (Roos, 2017) 50 > L 25 A
B Reprogramming test (Ohnuki, 2014; g 00— T 0-7 T
T T pl ? T i T : T |) 40 g RN 1 0- - l
_a Y 0 2 2 6 8 CpG methylation beta value 0 20 20 60 80 100
PCAl: 47% [ @ Aging skin (Roos) @ Reprogramming (Ohnuki) KS test, -log10(adj.P-value)
(&



https://doi.org/10.1101/2023.12.01.569529
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.01.569529; this version posted December 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A PREPRINT - DECEMBER 30, 2023

Figure 2: Identification of covariate shift and its impact on aging clock models. a, An example of weight and
height covariate shift between the control and the achondroplasia cohorts. b, Ages predicted by a model trained on the
weight and height measurements of the control cohort. The predictions are significantly biased for the achondroplasia
cohort, which is a purely technical phenomenon caused by shifted covariates. ¢,f,i, Principal component analysis (PCA)
of DNAm samples shows no covariate shift between the training and testing splits of the same aging skin dataset [28]]
(c), a moderate covariate shift between the different aging skin datasets [28,29] (f), and a strong covariate shift between
the aging skin dataset [28]] and the in vitro fibroblast reprogramming dataset [30] (i). d,g,j, Histograms of beta values
for individual DNAm sites demonstrate no shifts between the two subsets of data (d), moderate shifts between the aging
skin datasets from different studies (g), and strong shifts between the aging skin and the reprogramming datasets (j).
e,h,i, Histograms of —log;g(adj. P values) illustrate that no DNAm sites were rejected by the KS two-sample test at the
0.01 significance level (see Methods) confirming the absence of covariate shift (e), 81% of DNAm sites were rejected
by the KS test confirming the presence of moderate covariate shift (h), and 86% of DNAm sites were rejected by the
KS test confirming the presence of strong covariate shift (k). Percentages on the axes in ¢, f, i indicate the amount of
variance explained by the corresponding principal components. Representative sites for histograms d, g, j were chosen
from the top-four sites ordered by their correlation with chronological age.

Reprogramming and embryogenesis datasets exhibit significant covariate shifts relative to aging datasets

Covariate shifts can arise from various intrinsic and technical factors, including differences in sampling sources and
locations, tissue cell content, sample handling techniques, instrumental effects, efc. [18]. To estimate the extent
of covariate shift in DNA methylation (DNAm) studies, we analyzed four representative scenarios in the order of
increasing expected difference between the distributions of DNAm patterns: (i) One aging dataset split into two subsets;
(i1) Two independent aging datasets; (iii) Aging vs. cellular reprogramming in vitro and in vivo; and (iv) Aging vs. early
embryogenesis, for which epigenetic rejuvenation was also demonstrated [[7].

First, we examined a DNAm dataset of aging human skin by Roos et al. [28] split randomly into the training and testing
subsets. As anticipated, we detected no discernible covariate shift: the subsets are indistinguishable by the PCA (Fig.
k), DNAm value distributions of at least top-4 age-correlated CpGs from both subsets perfectly overlay each other
(Fig. ), and the KS test for distribution similarity further confirms the lack of covariate shift (Fig. 2k).

Second, for two independent datasets of aging human skin [28],29], moderate covariate shift is evident from a similar
analysis (Fig. 2f,g), with the KS test indicating substantial differences in individual distributions (Fig. Zh): 81% percent
of sites were rejected by the test (meaning that these CpGs have different distributions). On the other hand, a joint
analysis of two aging mouse liver datasets [31}132] displays minimal covariate shift (only 1% of CpGs are rejected)
(Extended Data Fig. [TId-f).

Third, a comparison of the aging human skin dataset [28] with two datasets of in vitro human fibroblast reprogramming
[4}130] revealed strong covariate shifts: at the early stages, the fibroblasts appear to closely resemble aging skin samples
in their principal component (PC) coordinates (Fig. [2; Extended Data Fig. [Th), but, as the reprogramming progresses
through the maturation phase, a notable departure from the skin samples can be observed (86% and 69% of CpGs are
rejected, respectively; Fig. [2j.k; Extended Data Fig. [Ib,c). Such sample behavior during in vitro reprogramming might
suggest that the reprogrammed cells acquire some phenotype unobservable in vivo.

To shed more light on this hypothesis, we further compared a dataset of in vivo reprogramming in mouse liver [3]]
with merged liver samples from two datasets of mouse aging [31}32], as these two studies demonstrated no significant
difference in the previous analysis. As a result, we detected a moderate covariate shift according to the PCA and the KS
test (32% of CpGs were rejected, Extended Data Fig. [Tig-i), which might imply that the in vivo conditions are better at
preserving the normal phenotypic characteristics.

Fourth, to address the “ground zero” hypothesis of epigenetic rejuvenation during embryogenesis [33]], we compared
mouse embryos [34] with blood aging samples [31]], as both of these datasets were used previously to demonstrate this
phenomenon [7]]. The first stages of embryogenesis strongly diverge from the aging samples, while the later stages align
closer to the aging cluster on PCA, with the KS test detecting moderate covariate shift (15% of CpGs were rejected,
Extended Data Fig. [Tj-1).

These results collectively suggest that the DNAm covariates can lead to significant shifts between datasets, thereby
implicitly increasing the risk of clock prediction failure. Given these risks, we advocate for the routine checks of
covariate shifts between datasets using the aforementioned methods or other techniques reviewed elsewhere [17] before
applying aging clocks.
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Aging clocks are inconsistent in their predictions for reprogramming-induced rejuvenation

When choosing a specific machine learning model to construct an aging clock, a researcher inevitably introduces model
uncertainty (Fig. ). The choice of model family (e.g., Linear Regression) includes certain assumptions about how
the true process of epigenetic aging, not accessible a priori, works. Therefore, by training different aging clocks on
different data or using different ML model families, one can expect to obtain poorly consistent predictions [33].

To demonstrate a critical role of model uncertainty, we leveraged eight published aging clocks trained on different
CpG sets and tissue types [26} 27} 136-40] and applied them to two in vitro reprogramming datasets (see Methods). As
expected, all these clocks varied greatly in their predictions across the reprogramming timeline (Fig. [3p, Extended Data
Fig. [2h). We further focused on the period of the first three weeks of reprogramming (from initiation to maturation), as
the end of the third week (approximately, day 20) marks the loss of somatic identity and the increasing risk of teratoma
formation [1]]. A comparison of differences between the ages estimated at the beginning and at the last available time
point before the end of this period (that is, day 15 for Ohnuki et al. [30] and day 17 for Gill et al. [4]) exhibits evident
inconsistencies for both datasets, ranging from the Horvath multi-tissue clock [26] predicting age reversal by 40 years
to the Hannum blood clock [27] predicting age increase by 13 years (Fig. Bt and Extended Data Fig. 2h.b).

To test the hypothesis that these discrepancies might have arisen from the differences in training datasets rather than
from the clock models themselves (most of which are based on ElasticNet regression), we trained different ML models
on the same dataset of aging human skin [28] and discovered that their predictions of rejuvenation demonstrate a
considerable instability as well (Fig. [3d, Extended Data Fig. Zt). Despite these inconsistencies, most models indicated
positive age changes. Therefore, the clocks could potentially serve as qualitative (or binary) predictors of rejuvenation
for the in vivo studies.

To explore this possibility, we estimated biological ages in the in vivo reprogramming dataset [3]. For that, we developed
new aging clocks by fitting a Lasso regression over the combined dataset of aging mouse liver |31, 32]] (see Methods)
considering that the CpGs in these aging and reprogramming datasets poorly overlap with the existing clock models.
These clocks yielded quite robust performance (Fig. [3f), but they failed to register any rejuvenation between the old
control mice and the old mice treated with the OSKM factors (Fig. [3f). Notably, all models consistently predicted
higher ages for all control liver samples, suggesting a response shift [17] (i.e., Pirain(Y) # Prest(Y')) between the
training and the testing datasets, which might result from the differences in DNAm patterns between the training and
the testing mouse strains (inbred C57BL/6 and transgenic i4F-B, respectively).

Taken together, our findings highlight a considerable instability of predictions with regard to the choice of both the
training dataset and the model family employed for prediction. This lack of agreement between the aging clocks could,
supposedly, result from the covariate and the response shifts described previously in this study, as well as from the
manifestation of model uncertainty, leading to the divergent rejuvenation dynamics.

Reprogramming data cannot be used to predict normal aging

We further examined the interchangeability of the aging and reprogramming datasets. When the regression models are
trained, they need to satisfy a certain degree of correlation expressed, for example, as the R? score or mean absolute
error (M AFE). Supposedly, in an ideal case, when a clock predicts age with absolute accuracy (R?=1.0, M AE=0), the
predicted ages can be used interchangeably with the true chronological ages (because they are equal) to train another
model on the testing data, and to predict ages in the original training dataset with the same accuracy. In reality, this ideal
case is never observed due to the technical and biological variations in the training and testing samples and sampling
techniques, and due to model under- or overfitting. But we hypothesize that if these effects are small (i.e., if there is
little epistemic uncertainty), then the reciprocal prediction of training data by the ages predicted for testing data should
still be possible, albeit with some degree of error.

To evaluate this mutual interchangeability (that is, commutativity) of datasets from the perspective of model training,
we developed an Inverse Train-Test Procedure (ITTP, see Methods) (Fig. p.b). Considering the availability of ground
truth measurements, we divided the ITTP use cases into two categories. In case 1, when comparing two aging datasets,
the biological ages are available for the testing dataset X;., Y;. (Fig. @) because they can be approximated by the
chronological ages due to the fact that the chronological ages provide important information on the biological ones
[41]. According to the ITTP, we first train model 1 (e.g., a linear regression) on the training set X, Y, to predict
the ages of testing samples Y;e, where the hat symbol " denotes predicted values. Second, model 2 is trained using the
testing features X,. and the ages predicted by the model 1 Y,.. If the datasets are indeed interchangeable, similarly
good performance metrics are expected for the predictions made by model 2 for the original training samples (Fig. 4h).

In case 2, when leveraging an aging DNAm dataset { X;,., Y}, } and a reprogramming dataset { X, }, we cannot ap-
proximate biological ages for the testing dataset (Fig. @p) because we do not expect the biological age of reprogrammed
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Figure 3: Inconsistency between the estimations of reprogramming-induced rejuvenation provided by the aging
clocks. a, A schematic representation of model uncertainty stemming from the choice of a particular model. b,
Published aging clocks (most of which are ElasticNet-based) trained on different DNAm datasets predict different
trajectories of rejuvenation, as cellular reprogramming progresses. The dashed line represents zero epigenetic age. c,
Aging clocks showing differences in the rejuvenation effect accumulated between reprogramming days 0 and 15, bar
colors match line colors from a and represent different published clocks. Dashed line represents lack of changes in
epigenetic age. d, Inconsistency of predictions holds for the clocks built using different ML model types and trained
on the same dataset. Bar colors represent different models. The dashed line represents lack of changes in epigenetic
age. e, Scatter plot of the de novo Lasso clock model performance on the testing subset (see Methods). Pearson’s
correlation coefficient (r), the associated P value (Pval), R? score (R?), and mean absolute error (M AE) are displayed.
The dashed line corresponds to the points of equality between the predicted and chronological ages. Dots represent
individual testing samples. f, Epigenetic ages predicted by the de novo Lasso clock for the in vivo liver reprogramming
dataset [[3]] containing samples from the young (n=5, green boxplot and sample dots) and old (n=5, orange boxplot
and sample dots) control mice, and old reprogrammed mice (n=5, blue boxplot and sample dots). Samples from the
transiently reprogrammed mice exhibit insignificantly increased (P value=0.11, two-sided MWW test) epigenetic age
in comparison to the control group. Dashed lines represent chronological ages for the respective cohorts. Blue icon
indicates the training dataset, red icon indicates the reprogrdmming dataset. Detailed dataset descriptions are presented
in Supplementary Tables 1 and 2.
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cells to stay approximately the same as their chronological age, as would be the case for a dataset of normal aging. As

before, we train model 1 on the training data and predict the ages of reprogramming samples )A/mp. In this scenario,
we cannot validate our predictions due to the lack of ground truth values of biological age for reprogrammed cells, so
we can only assume that the predictions are correct and use them to train model 2. If, as a result, we observe good
performance metrics between the model 2 predictions and the ages of the original training dataset, then we can still
assume interchangeability, regardless of the intermediary predictions of model 1. On the other hand, if we obtain poor
prediction accuracy for model 2, then we infer that these datasets are not interchangeable, and that such prediction
failure was supposedly caused by a large epistemic uncertainty, presumably originated from a substantial dataset shift.
In summary, the ITTP approach contributes to our multifaceted estimation of prediction uncertainty in aging and
reprogramming.

We further applied this procedure to the pairs of datasets described previously (Fig. Jand Extended Data Fig. [I)) and used
the Lasso regression model family as models 1 and 2 (see Methods). Models performed well for the aging human skin
dataset [28]] (Fig. @k.d), both when applying model 1 to predict testing data ages (Pearson’s r=0.934, M AE=2.8 years)
and when applying model 2 to predict ages of the original training data (Pearson’s =0.831, M A E=4.4 years) using Yie
instead of Yy, to fit model 2. Therefore, we inferred that the training and the testing datasets are interchangeable and
can be used reciprocally to predict each other, which is expected for a dataset split randomly into two parts. Similarly,
we obtained good reciprocal predictions for the mouse blood samples subset [31] (Extended Data Fig. [3¢)

In accordance with the already demonstrated evidence that the datasets of aging mouse liver [31} 132] exhibit no
significant covariate shift (Extended Data Fig. [Id), we observed that they both pass the ITTP relatively well (Extended
Data Fig. 3p.c). A slightly lower accuracy of predicting Meer ages with clocks trained on Thompson data (Pearson’s
r=0.737, M AE=6.14 months) might be attributed to the presence of a number of outliers in the Meer dataset (Extended
Data Fig. [Id). At the second step, however, we obtained great performance metrics (Pearson’s r=0.975, M AE=1.49
months), which is another evidence of absence of a significant covariate shift between these datasets.

Case 2 applications of the ITTP demonstrated more diverse results. Both in vitro fibroblast reprogramming datasets (Fig.
Mk and Extended Data Fig. [3p) yielded poor predictions for the aging human skin data (Pearson’s r=0.235, M AE=52.7
years and Pearson’s 7=0.239, M AFE=34.3 years for the second-step models trained on the Ohnuki et al. [30] and the
Gill et al. [4] datasets, respectively). We therefore concluded that the reprogramming datasets cannot be used to predict
normal aging skin data if we consider age predictions for the reprogramming data to be accurate.

The dataset of in vivo reprogramming in mouse liver [3]], on the other hand, passed the second step of ITTP with
remarkable success, demonstrating the performance metrics of Pearson’s r=0.968 and M AFE=2.21 months (Extended
Data Fig. 3[d). Of note, the predictions at step 1 are shifted upward, while the aging trend is still captured well (Pearson’s
7=0.826). Finally, applying the ITTP to the datasets of aging mouse blood [31] and mouse embryogenesis [34] resulted
in prediction failures similar to that of in vitro reprogramming (Extended Data Fig. 3f).

To summarize, the ITTP method highlights the concerns of applying aging clocks to the reprogramming data (or
to any other OOD scenario). As an empirical test to discover possible dataset shift, it helps to assess the risk of
prediction failure. The results presented above unambiguously showed that normal aging cannot be predicted using
the reprogramming data, which immediately prompts to inquire whether, in return, the ages in reprogramming can be
predicted correctly using data on normal aging.

Uncertainty-aware clocks reveal insignificance of age reversal

In clinical practice, where decision-making often relies on the level of uncertainty, an ML model is required to estimate
not only the desired outcome, but also the uncertainty of its predictions [15]. A robust model should be able to warn
of extreme uncertainty when making predictions on shifted datasets. The majority of aging clock papers, inspired by
Horvath [26] and Hannum et al. [27]], have adopted the ElasticNet model that lacks inherent uncertainty estimation. To
address this limitation, we turned to the Gaussian Process Regressor (GPR) model [42] 43]], a variant of which was
recently employed in aging clocks [44].

To demonstrate the concept of GPR, we trained and tested it on a single CpG site (Fig. [5p,b). A Gaussian process
(GP) can be viewed as a probability distribution encompassing all possible functions that can be fitted over the training
observations [42]. Therefore, for every input methylation value, a fitted GPR model provides an estimation of the
most probable age, along with the probability distribution around this estimation with a finite variance that represents
a credible interval for the prediction. The credible interval, grounded in Bayesian statistics, is calculated for each
individual prediction relying on the training data and prior model assumptions. It should not be confused with a
confidence interval which describes only the distribution of multiple predictions.
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Figure 4: Inverse Train-Test Procedure (ITTP) demonstrates incorrect predictions of aging data based on reprogramming
data. a, In ITTP case 1, where both datasets contain chronological age values (a verifiable case), interchangeability
is evidenced by the comparable performance metrics across both procedural steps. b, ITTP case 2 is characterized
by one dataset containing chronological age values and the other lacking them (an unverifiable case). Here, only the
second-step performance metrics are computable. The failure of a hypothetical reprogramming dataset in the ITTP is
indicated by the poor performance at the second step. ¢,d, Application of the ITTP to the aging human skin dataset [28]]
split into the training and the testing subsets as 90% and 10%, respectively (see Methods). As the performance metrics
computed at both steps 1 (¢) and 2 (d) are high, these datasets are considered interchangeable. e, Application of the
ITTP to the aging human skin dataset [28] and the human fibroblast reprogramming dataset [30]. Poor performance
metrics at step 2 qualify datasets as non-interchangeable — the reprogramming dataset cannot be used to predict aging
data. Blue icons indicate the training datasets and orange icons indicate the testing dataset. The red icons indicate the
reprogramming dataset. Detailed dataset descriptions are presented in Supplementary Tables 1 and 2.
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When a GPR fits the training data well, it computes a finite error stemming from the variation of age points associated
with any given DNAm value (earlier referred to as aleatoric uncertainty). As methylation values move further away
from the training distribution, the model assigns greater epistemic uncertainty. Consequently, the credible interval
widens, reflecting that the model is less familiar with this particular range of DNAm values (Fig. [5p). The GPR thus
provides an estimation of total prediction uncertainty, encompassing both its aleatoric and epistemic components, and
presenting it as a credible interval of several standard deviations for every individual prediction. It is important to note
that the GPR predictions are influenced by the choice of prior distributions over functions, meaning that the results may
slightly vary depending on these underlying assumptions.

In accordance with the previous sections, we employed GPR models trained on aging datasets to predict rejuvenation
trajectories in the respective reprogramming scenarios and to determine the corresponding credible intervals (see
Methods). When applied to the in vitro reprogramming dataset [30]], a skin-trained GPR (Extended Data Fig. [dh)
predicted a noticeable epigenetic age decline from reprogramming day 11 through day 28 (Fig. [5f), which aligned well
with our previous observations obtained with ElasticNet (Fig. [3h) and with the observations made by the authors of said
dataset. However, the accompanying credible interval of two standard deviations revealed how extremely uncertain the
model is about these predictions, especially in the case of the late reprogramming phase. This uncertainty prompts
questions regarding the significance of any rejuvenation effect until the 20th day of reprogramming, a point at which a
complete erasure of somatic identity was reported in the original study [30].

Applying GPR to the in vitro fibroblast reprogramming dataset [4] yielded similar results, with two notable differences
(Fig. [5). First, the credible interval at reprogramming day 0 is slightly narrower, suggesting that these samples might
be more similar to the training set. Second, the model indicated a significant rejuvenation effect between days 0 and 17
(P value=0.014), indicating that rejuvenation might indeed occur at the later stages of the maturation phase. However,
the substantial credible interval at day 17 (spanning from O to approximately 70 years) restrains the extent to which
confident statements can be made.

We next revisited the in vivo mouse reprogramming dataset [3]] using the GPR model trained on aging mouse liver
(Extended Data Fig. [db) and observed a significant negative rejuvenation effect between the control and OSKM-treated
old mice (Fig. [5p). This outcome highlights the importance of incorporating individual prediction uncertainties to
resolve differences between groups that are otherwise undistinguishable by simpler methods such as Lasso regression.
However, similar to Lasso-based predictions, we observed a systematic bias in GPR estimations. This bias did not
appear to strongly affect credible intervals, which might suggest that GPR underestimates credible intervals in cases of
dataset shift, resulting, in this instance, from the comparison of two different mouse strains.

The GPR model, trained on the mouse blood (Extended Data Fig. [d) and applied to predict the dynamics of epigenetic
age during mouse embryogenesis [34], displayed a local minimum at embryonic day 8.5 (Fig. [5f), consistent with the
findings reported by Kerepesi et al. [[7]. However, these predictions are accompanied by large credible intervals, with
insignificant age decline between days 3.5 and 8.5 (P value=0.54) and subsequent insignificant age increase between
days 8.5 and 10.5 (P value=0.37). Consequently, this prevents the definitive designation of day 8.5 as the “ground
zero” of epigenetic age. Notably, the credible intervals get narrower throughout the course of embryonic development,
supporting our earlier observation of a larger shift between the early days of embryogenesis and the aging process
(Extended Data Fig. [Tj).

Our findings indicate that a GPR model, capable of assessing its prediction uncertainty, can effectively detect covariate
shifts in a test dataset by assigning elevated uncertainty to samples not represented in the training data. Based on these
insights, we propose that the future aging clock models should incorporate the capability to quantify their prediction
uncertainty. This enhancement would dramatically advance the reliability of these models, enabling improved control
and mitigation of potential prediction failures.
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Figure 5: Estimation of epistemic uncertainty in the rejuvenation datasets using Gaussian Process Regression (GPR)
models. a, A simplified case of a GPR model trained to predict chronological age based on a single methylation site
(see Methods). Prediction uncertainty is presented as credible intervals of two standard deviations here and in panels
b-f. b, Prediction uncertainty increases as DNAm values move away from the training distribution. c-d, Predicted
rejuvenation trajectory and estimated prediction uncertainty for in vitro human fibroblast reprogramming datasets by
Ohnuki et al. [30] (c) and Gill et al. [4] (d). No significant rejuvenation events are detected before days 20 and 17
of reprogramming, respectively. e-f, Predicted epigenetic age trajectory and prediction uncertainty for in vivo mouse
reprogramming [3]] (e) and mouse embryonic development [34] (f).

Discussion

Epigenetic clocks have been widely used to demonstrate age acceleration and deceleration in a variety of research
contexts [12]]. However, there is still a reluctance to include clock measurements as endpoints in the clinical longevity
intervention trials [45]. In addition to the fact that the existing clocks fail to capture some aging-associated conditions
[20]], we emphasize that they cannot be easily validated and relied upon, given their inability to estimate prediction
uncertainty.

In this study, we present a computational framework for validating the rejuvenation effects predicted by the epigenetic
aging clocks. Due to the unavailability of ground truth values for the biological age, the concept of epigenetic age
reversal remains speculative because it cannot be validated directly. Therefore, we have to rely on indirect evidence. To
address this challenge, our framework encompasses four specific approaches: covariate shift estimation, comparison
of different clock models, the Inverse Train-Test Procedure (ITTP), and the prediction uncertainty estimation using a
Gaussian Process Regression (GPR) model.

We demonstrate how the presence of covariate shift can distort model performance and show that covariate shift is
highly prominent in the DNA methylation (DNAm) data across cellular reprogramming and embryonic development.
Moreover, by applying eight different published aging clocks [26} 127, [36H40] to the in vitro reprogramming data, we
illustrate that the magnitude of rejuvenation effect achieved by the end of the maturation phase of reprogramming highly
depends on the clock model type and the chosen training data. Across the aforementioned models, the age reversal
effect can differ by up to two orders of magnitude, including null and even negative rejuvenation. Our ITTP approach
further reveals that in vitro reprogramming datasets cannot robustly predict normal aging, thus additionally challenging
the notion that normal aging can accurately predict reprogramming.

A GPR-based aging clock can estimate the uncertainty of its own age predictions in the form of standard deviations,
even for samples that do not belong to its training distribution. While reproducing the decrease in average epigenetic
age, this clock demonstrates no statistically significant difference between the days 0 and 15 of in vitro reprogramming
in one dataset [30] (Fig. ), and marginal significance between days 0 and 17 in another dataset [4] (Fig. ). However,
the accompanying credible interval at day 17 spans approximately 70 years, thereby preventing definitive conclusions
regarding the observed rejuvenation effects.

The in vivo mouse liver reprogramming data [3]] exhibits a covariate distribution closer to that of normal mouse aging.
Moreover, it passes the ITTP test, suggesting that in vivo reprogramming might preserve organismal states better than
the in vitro procedure. However, we show that both the Lasso and the GPR clock models surprisingly predict old
reprogrammed samples to be either of the same age or even significantly older than the old controls (Fig. [Bg). This
finding prompts further forays into the nature of processes accompanying in vivo reprogramming, especially in light of
a recent study describing impaired liver function and premature death in mice with continued OSKM induction [46].

While testing the “ground zero” hypothesis of epigenetic aging [33]], we discover significant covariate shift and ITTP
failure for the dataset spanning from early to middle embryonic development [34]. While average GPR-predicted
ages recapitulate previously described dynamics of epigenetic age decrease in embryogenesis [7]] and yield age zero at
embryonic day 8.5, these dynamics are found to be statistically insignificant from the epistemic uncertainty standpoint
(Fig. Bp).

We hypothesize that the GPR model assigns such wide credible intervals to both in vitro reprogramming and embryoge-
nesis because the totipotent and pluripotent states are too unfamiliar to a model trained purely on differentiated somatic
cells. Thus, we have shown that an aging clock model that performs well within aging datasets will likely fail to reliably
predict rejuvenation events not represented in the training data. To decrease this uncertainty, the inclusion of progenitor
cells in the training dataset could prove beneficial.
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Our work should not be viewed as an attempt to prove or disprove the existence of rejuvenation effects. We also do not
aim to comprehensively cover all available datasets of putative rejuvenation, be it reprogramming, embryogenesis, or
other interventions. Instead, by concentrating on the most striking examples, we illustrate that the existing aging clocks
that rely on overly optimistic assumptions [[L1]] cannot serve as reliable biomarkers of rejuvenation.

From the machine learning viewpoint, the effect of out-of-distribution samples on the prediction outcome is exceptionally
well-recognized [47, 48], as a trained model is highly unlikely to perform well on data out of the original distribution
[49,150]. Likewise, the good performance on the training and the validation datasets cannot guarantee that the model
trained to predict normal aging will reliably predict the rejuvenation effects. Nor could it be used as the reprogramming
validation method, especially given the lack of ground truth and the large resulting uncertainty. Yet, these approaches
appear to have become common today, which is one habit that we hope will be broken.

Despite the clock drawbacks, a reliable surrogate health measure [S1] is still required for the evaluation of longevity
drugs and other interventions in clinical trials [52]]. Several criteria have been proposed for the potential biomarkers
of aging [53]. We suggest that, in order to gain a wider acceptance within the longevity community, the single-point
age clock predictions must be accompanied by the uncertainty estimation [[L5]], while acknowledging for the potential
limitations of this estimation. Furthermore, we recommend assessing potential covariate shifts between datasets with
methods discussed in this work before applying any aging clock models.

We advocate for the development of a clinically relevant and reliable aging clock with a clearly defined training target,
such as mortality, combined with the ability to estimate prediction uncertainties. This approach is essential for alerting
researchers to possible misinterpretations of the trial results. While such a protocol may add complexity to aging clock
development, it is crucial for advancing the field and for positioning aging clocks as accurate health estimators.

Methods

Height and weight data processing.

For our toy example of the dataset shift, we sourced data from the WHO [21] for the control cohort and from Hoover et
al. [23] for the achondroplasia cohort. The datasets included height and weight means and standard deviations across
various ages: 60—228 months for the control and 0-240+ months for the achondroplasia cohort. We interpolated the
control dataset using the methodology by Andres et al. [54] to align age ranges (0-240+ months). Assuming a normal
joint distribution for height and weight [22], we sampled points with the corresponding means and covariance matrices.
Age was uniformly sampled from 0 to 276 months. 1000 samples were generated for each cohort.

Using 1000 samples from the control cohort, we constructed a bivariate linear regression model with the Python
scikit-learn [S5] package. Post-training, this model was used for age prediction in the achondroplasia cohort.

DNA methylation data processing.

For the studies of Roos et al. [28]] (GSE90124), Vandiver et al. [29] (GSE51954), Ohnuki et al. [30] (GSE54848), Gill
et al. [4] (GSE165179), Auclair et al. [34] (GSE60334), and Chondronasiou et al. [3] (GSE156557), files containing
processed methylation beta values were downloaded from the GEO database under the corresponding accession numbers.
For detailed description of sample groups isolated for our analysis, see Supplementary Table 1. Methylation matrices
were assembled for each dataset by merging selected samples and retaining only those CpG sites that appeared in every
sample of the respective dataset.

A processed multi-tissue dataset from the Thompson et al. study was downloaded from the GEO database, where it is
deposited under accession no. GSE120132 (ref. [31]). As all other mouse DNAm studies referenced in this study used
wild-type C57Bl/6J or related mouse strains, we selected 196 samples representing this strain from the 549 samples
comprising the original dataset. In the original dataset, CpG methylation values from both DNA strands were combined
and assigned to the forward strand cytosines, while retaining strand annotation. To utilize as much information as
possible, we treated methylation values from forward and backward strands separately. A processed multi-tissue dataset
from the Meer et al. study comprising 76 samples was also downloaded from the GEO database under accession no.
GSE121141 (ref. [32]).

For the studies of Thompson et al. and Meer et al., we followed the instructions on data processing provided by Trapp
et al. [8]]: in each dataset, we retained only autosomal DNAm sites that featured at least 5-fold coverage in no less than
90% of samples, which yielded 1,242,194 and 2,131,404 sites, respectively. For the analysis of embryonic development,
we further isolated 50 blood samples from the Thompson et al. dataset. For the analysis of in vivo liver reprogramming,
we isolated 30 and 20 liver samples from the Thompson et al. and the Meer et al. datasets, respectively, and merged
them into one methylation matrix.
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Principles of CpG selection.

CpG site selection for aging clock training is a nuanced challenge, with various authors suggesting distinct, minimally
overlapping subsets [35]. To tackle this problem, we used CpG sites (CpGs) from established clocks most relevant
to each corresponding dataset pair. For instance, in analyzing covariate shift between the aging skin and fibroblast
reprogramming datasets, Horvath’s skin clocks [36] and the corresponding CpGs were employed. While any accurate
age-predicting CpG subset could suffice, we predominantly used known subsets for methodological simplicity where
possible. The detailed description of dataset pairs, clock models, and the amount of clock sites observed in the datasets
is specified in Supplementary Table 2.

Principal component analysis for covariate shift visualization.

Principal component analysis (PCA) presented in Fig. 2k.f,i and Extended Data Fig. [Th,d,g,j was conducted on merged
dataset pairs to select CpGs for the covariate shift analysis (refer to previous sections). This analysis employed the
Python scikit-learn library [55] with the default parameters. The two-dimensional kernel density estimations of PCA
results were performed using the kdeplot function from the Python seaborn package.

Kolmogorov-Smirnov test for a shift of individual covariates.

We employed a two-tailed Kolmogorov-Smirnov (KS) test on the selected CpGs (refer to site selection principles above)
to detect covariate shifts between the dataset pairs. This test assessed the null hypothesis that the beta value distributions
for a specific CpG site are identical across a given dataset pair. We applied the Benjamini-Hochberg correction to the
computed P values, considering the adjusted P value below 0.01 as indicative of a significant distributional shift. The
KS statistics and the P values were calculated using scipy [56]], and the multiple testing correction was performed with
statsmodels [57]] in Python.

Testing in vitro reprogramming datasets with different published epigenetic aging clocks.

We evaluated the consistency of predictions across eight aging clock models using the R methylclock[58] package,
which predicts epigenetic age from the input matrices of CpG methylation beta values. The clocks included: Horvath’s
multi-tissue clock [26]], Hannum’s blood clock [27]], Horvath’s skin+blood clock [36] (notated as Horvath skin in
this paper), PedBE clock [38], Wu’s clock [39], Zhang’s Best Linear Unbiased Prediction (BLUP) and ElasticNet-
based (notated as Zhang in this paper) clocks [40]], and Levine’s blood clock (also known as PhenoAge) [37]]. All
methylclock-generated predictions are available in our GitHub repository provided further below.

Testing in vitro reprogramming datasets with different models of aging clocks trained on the same dataset.

To evaluate prediction consistency across different aging clock model families, we employed five different machine
learning models from the scikit-learn package: k-neighbors regressor (the KNeighborsRegressor function), random
forest regressor (the RandomForestRegressor function), support vector regressor (the SVR function), Bayesian ridge
regressor (the BayesianRidge function), and histogram-based gradient boosting regressor (the HistGradientBoostin-
gRegressor function). These models were trained on the aging human skin dataset [28] using 5-fold cross-validation
and hyperparameter optimization via grid search, assessing model performance with the mean squared error metric.
Performance metrics of the optimally-tuned models for both the training and testing subsets are summarized in Table[T]

Model r Train | r Test | R? Train | R? Test | M AE Train | M AFE Test
k-neighbors regressor 0.844 | 0.654 0.699 0.402 3915 6.037
Random forest regressor 0.980 | 0.847 0.934 0.650 1.793 4.585
Support vector regressor 0.963 0.933 0.921 0.854 1.603 2.923
Bayesian ridge regressor 0.986 | 0.932 0.971 0.863 1.235 2.750
Histogram-based gradient boosting regressor | (0.999 0.883 0.998 0.752 0.237 3.729

Table 1: Model Performance Comparison

Lasso clocks for the in vivo reprogramming testing.

We observed that the in vivo reprogramming dataset [3] exhibited limited overlap with three established mouse aging
clocks (7/582 sites in the Thompson clocks [31], 3/90 sites in the Meer clocks [32], and 16/436 sites in the Petkovich
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clocks [59]]), potentially impairing clock predictions. Consequently, we developed a new clock using a Lasso penalized
regression model, trained on the liver samples combined from the Thompson et al. [31] and Meer et al. [32] aging
mouse liver datasets. Utilizing the LassoCV class from scikit-learn [55], we identified the optimal regularization
hyperparameter o through 5-fold cross-validation. The final model, selecting 22 out of 16,849 CpGs (Supplementary
Table 3), exhibited strong performance while testing (M AE=2.2 months, R2=0.866), as detailed in Fig. . This model
was then applied to predict epigenetic age in the in vivo reprogramming dataset [3].

Inverse Train-Test procedure with Lasso regression.

In general, the Inverse Train-Test procedure (ITTP) can be applied to any pair of datasets to test their interchangeability.
However, in practice, the outcome of the procedure will depend on the generalizing abilities of the chosen model. Thus,
it is crucial to use models from the same family (for instance, linear models) at steps 1 and 2 of the ITTP. We decided to
choose a linear regression model with Lasso penalization as a base model (i.e., model 1 and model 2 in Fig. ) for the
ITTP because it has generalization properties equivalent to ElasticNet (most often used aging clock model), but is easier
to train (optimizing one hyperparameter instead of two). Below, we provide a detailed algorithm for the ITTP procedure
for both use cases discussed in this study, presuming that the Lasso model is used as the base model.

ITTP case 1

The ITTP case 1 (also referred to as the verifiable case) considers a pair of datasets having ground truth values:
the training dataset { X4, Y-} and the testing dataset { X, Yz }, where Xy, and Xy, denote training and testing
features (CpG methylation values), respectively, and Y3, and Y;. denote the corresponding training and testing targets
(chronological ages). Let two different initializations of the Lasso regression model be m{ and m$ for the corresponding
steps 1 and 2 of ITTP, where the superscript 0 denotes the model state before training. Accordingly, let mj and mj
denote the models after training. Then, the ITTP case 1 can be performed by the following algorithm:

Step 1
1. Train model m? on { Xy, Y- }. Select the optimal regularization parameter o for Lasso regression, employing
cross-validation to evaluate model performance across a range of alpha values [(;,in, Qmaz |- For that, split
the dataset { Xy, Y%, } into multiple training and validation sets (we used 5-fold splitting), train the model on

each, and assess performance using the mean squared error metric. The « value yielding the best average
performance across all folds is chosen as the optimal one.

2. Apply the trained model mj to test dataset X, predicting ?}e.

3. Compute performance metrics for the model m] predictions for the pair Vi and ;.. We propose to compute
widely used regression metrics such as R?, mean absolute error (M AE), and Pearson’s correlation coefficient

().

1. Train model mJ on { Xy, ﬁe} Select the optimal regularization parameter «, as in Step 1.
2. Apply the trained model mj to train dataset X, predicting Ytr.

3. Compute performance metrics (R2, M AFE, r) for the model m} predictions by comparing Y, and Yy,
Compare the performance metrics obtained from the steps 1 and 2 of the ITTP. If the metrics are satisfactory and
comparable, then the datasets are assumed to be interchangeable.

Within the study, a threshold of R?>0.25 was employed to ascertain whether a model exhibits satisfactory performance.
If satisfactory metrics are obtained only during step 2, then we can assume that the given datasets are not fully
interchangeable, but the testing dataset still contains the information required for the training dataset prediction.

ITTP case 2

The ITTP case 2 (also referred to as the unverifiable case) considers a pair of datasets where the ground truth values
are available for the training dataset only: the training dataset {X,,, Y;,} and the testing dataset { X,..,,} (we denoted
the testing dataset as X,..,, to emphasize that the reprogramming datasets do not contain the ground truth values of
biological age). The algorithm for this case is similar to the ITTP case 1 with some distinctions in step 1:

Step 1
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1. Train model m? on {Xy,Y:-}. Select the optimal regularization parameter «, as was described in the
paragraph regarding step 1 of the ITTP case 1.

2. Apply the trained model m] to the testing dataset X, to yield age predictions Ymp.

1. Train model m$ on {X,.,, Yrep}. Select the optimal regularization parameter «, as was described in the
paragraph regarding step 1 of the ITTP case 1.

2. Apply the trained model mj to the training dataset X, to yield age predictions Yir.

3. Compute performance metrics (R?, M AE, r) for the model m} predictions by comparing Yy and Y.

In the second case of ITTP, we rely only on the performance metrics computed during step 2. If the metrics are
satisfactory, the datasets can be assumed interchangeable. Otherwise, the datasets cannot be used to predict each other
according to the chosen linear model assumption.

To train Lasso models during the ITTP steps described above, we used the LassoCV class from the Python scikit-learn
library [155]], which conducts a search for the optimal Lasso regularization hyperparameter o with inbuilt cross-validation
over the training subset.

Prediction uncertainty inference using Gaussian Process regression model.

A Gaussian Process regression (GPR) model was developed to predict the age of samples given their methylome. GPR
is a flexible non-parametric Bayesian approach to the regression tasks [42]. In our model, the inputs are the same
CpG sites used for covariate shift analysis from the published and the newly constructed (see the section about Lasso
training) aging clocks (Supplementary Table 2), and the outputs are the ages of the sample donors. The model was
trained using the Python scikit-learn package with a composite kernel comprising the Radial Basis Function (RBF) and
the white noise kernels elaborated further below.

Given that the methodology we use to build the GPR-based aging clocks has been described in detail elsewhere [44],
this section is focused primarily on deriving the prediction uncertainty, which is essential for our study. A Gaussian
Process (GP) is a probability distribution over possible functions that fit a set of points. Formally, it is a collection
of random variables, any finite number of which have a joint Gaussian distribution [42]. Given a train sample set

X ={x1,...,z,} € R?, a mean function m : R? — R, and a covariance function & : R% x R? — R, a GP can be
written as f(x) ~ GP(m(x), k(x,z")), if the outputs f = (f(z1),..., f(x,))T have a Gaussian distribution described
by f ~ N(u, X), where ¢ = m(z1,...,2,) and X; ; = k(x;, z;). The mean function is usually assumed to be the

zero function, and the covariance function is a kernel function chosen based on assumptions about the function to be
modeled. We tried different kernel functions and found that the sum of the Radial Basis Function and the white noise
kernels performed the best in terms of prediction metrics (M AE and R?). The RBF kernel was also used by the authors
of the previously reported GPR-based aging clock [44]. The RBF kernel is defined as:

T; — X4 2
k(zi,z;) = s”exp (”2Z2]H> ) (D

where s? is the variance hyperparameter and [ is the length-scale hyperparameter to control the smoothness of the
modeled function, or the speed of its variation. Because GP assumes the output variable includes an additive Gaussian
noise part ¢ ~ N(0,02), i.e. y; = f(x;) + &, the vector of outputs is viewed as y ~ N(0, 3 + o2I). The term 21
reflects the white noise kernel added to the model to account for the noise in observations, which corresponds to the
aleatoric part of the prediction uncertainty.

Given a test point 2*, its output distribution is defined as f*|z*, X, y which is a conditional Gaussian distribution of the
following form:

Frla* X,y ~ N(p*, (0%)%) = N ()1 (2 + 0y, k(a*, %) = ()T (S + 0*1)7H(KY) @)
where k* = (k(z1,2%), ..., k(z,,2%))7.

Thus, given the training data, the distribution of predictions of a new point is given by a closed analytical form of
Gaussian distribution. In our model, the inputs are the CpG methylation vectors, and the outputs are the chronological
ages. The mean of the distribution x* can be used as the final prediction of the regression model (corresponds to the
prediction of ElasticNet or other models). At the same time, the variance of the distribution (o*)? expresses the level
of total prediction uncertainty — one of the most important aspects of our study. One can see that the magnitude
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of the uncertainty depends on the vector of covariates k* of the new sample z* with the training set samples X.
Because the RBF kernel relies on the quadratic distance between the samples, the total prediction uncertainty for an
OOD sample will increase as the sample moves away from the training distribution until it reaches the limiting value
(0%)% =~ k(x*,2*) = s2, determining the upper bound of the prediction uncertainty the model can estimate for an OOD
sample.

Testing the rejuvenation effects using a meta-regression approach.

The Gaussian process model, yielding uncertainty levels for individual sample predictions as Gaussian distribution
variances, enables statistical comparison of two predictions via, for example, the z-test (if two variances are assumed
to be equal). For comparing prediction groups, each with unique variances, we employed advanced meta-analysis
techniques. Utilizing the meta_regression function from Python PyYMARE 0.0.3 [60]], we accounted for individual age
prediction variances in two in vitro reprogramming groups (e.g., days 0 and 15). This function, which incorporates
average ages, variances, and a binary group indicator in the design matrix, uses a restricted maximum likelihood
approach to optimize meta-regression coefficients, providing coefficient estimates and their P values.

Computational and statistical analyses.

Except for the methylclock 0.7.8 predictions conducted via R 4.2, all other analyses were performed in Python 3.9.18
using numpy 1.22.4, pandas 1.5.1, scipy 1.7.2, and scikit-learn 1.2.1 for data handling and the majority of calculations,
and matplotlib 3.5.1 in combination with seaborn 0.11.2 for data visualization. Multiple testing corrections were
performed with statsmodels 0.13.2 where indicated. Other packages and functions used for specific computational and
statistical analyses are cited in the corresponding sections above.

Data availability

All datasets of DNA methylation (DNAm) in this study were obtained from the Gene Expression Omnibus (GEO) under
the corresponding accession numbers (GSE IDs). Dataset details including GEO IDs are available in Supplementary
Table 1. The processed versions of these datasets were made accessible via our GitHub repository at https://github,
com/ComputationalAginglab/reprogramming_ood.

Code availability

The complete code used for all analyses carried out in this study and the detailed installation instructions are publicly
available from https://github.com/ComputationalAginglab/reprogramming_ood,
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