# Ours # location: server location: local data: type: semantic_seg name: dynamicearthnet num_classes: 7 window_size: 7 image_size: 256 #pre-train: 32, fine_tune: 96 time_steps: 2 weights: [0.1, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] # channels: B02|B03|B04|B05|B06|B07|B08|B11|B12|B8A channels: B02|B03|B04|B05|B06|B07|B08 local: model_save_dir: /home/native/projects/data/smart_watch/models/ train_dir: /media/native/data2/data/dynearthnet_challenge/ test_dir: /media/native/data2/data/dynearthnet_challenge/ train_coco_json: /media/native/data/data/smart_watch_dvc/extern/onera_2018/onera_train.kwcoco.json test_coco_json: /media/native/data/data/smart_watch_dvc/extern/onera_2018/onera_test.kwcoco.json val_dir: server: model_save_dir: /data4/peri/smart_watch/models/ train_dir: /data4/datasets/smart_watch_dvc/extern/onera_2018/ test_dir: /data4/datasets/smart_watch_dvc/extern/onera_2018/ val_dir: /data4/datasets/smart_watch_dvc/extern/onera_2018/ train_coco_json: /data4/datasets/smart_watch_dvc/extern/onera_2018/onera_train.kwcoco.json test_coco_json: /data4/datasets/smart_watch_dvc/extern/onera_2018/onera_test.kwcoco.json training: backbone: resnet34 #resnet18 #resnet101, resnet50, resnet34 model_name: deeplab_diff #shallow_seg, deeplabWS, deeplab, resnet, resnet_enc, resnetGNWS, deeplab_diff model_feats_channels: [64, 128, 256, 512, 256] #[32, 32, 64, 64, 128], [64, 64, 128, 256, 512], [32, 32, 64, 128, 256], [64, 128, 256, 512, 1024] # this needs to match the correct number of layers in the model gn_n_groups: 32 num_channels: 7 out_features_dim: 10 weight_std: True beta: False pretrained: /home/native/projects/data/smart_watch/models/experiments_onera/tasks_experiments_onera_2021-10-18-13:27/experiments_epoch_0_loss_11.28138166103723_valmF1_0.6866047574166068_valChangeF1_0.49019877611815305_time_2021-10-18-14:15:27.pth distributed: False learning_rate: 0.005 # best: # resume: /home/native/projects/data/smart_watch/models/experiments_onera/tasks_experiments_onera_2021-10-07-10:23/experiments_epoch_7_loss_3440.9182313163324_valmIoU_0.5437659117662471_time_2021-10-07-20:47:20.pth # resume: /home/native/projects/data/smart_watch/models/experiments_onera/tasks_experiments_onera_2021-10-20-17:15/experiments_epoch_37_loss_7.454268312454223_valmF1_0.7629152048972937_valChangeF1_0.5579948695099214_time_2021-10-20-18:04:59.pth # resume: /home/native/projects/data/smart_watch/models/experiments_onera/tasks_experiments_onera_2021-10-19-21:07/experiments_epoch_5_loss_2.1330662268512652_valmF1_0.6782787764504841_valChangeF1_0.47969179367601383_time_2021-10-20-03:39:36.pth resume: False train_val_test_split: [0.95, 0.02, 0.03] epochs: 200 start_epoch: 0 batch_size: 4 drop_last_batch: True momentum: 0.9 weight_decay: 0.0001 num_workers: 0 test_with_full_supervision: 1 model_single_input: False model_diff_input: True n_samples: 5 high_confidence_threshold: train_cutoff: 0.4 val_cutoff: 0.4 train_low_cutoff: 0.0 val_low_cutoff: 0.0 evaluation: use_crf: False crf_t: 1 crf_scale_factor: 1 inference_window: 13 batch_size: 2 procedures: train: True validate: True