J Exp MedJ. Exp. MedThe Journal of Experimental Medicine0022-10071540-9538The Rockefeller University Press148323922136039ArticleTHE ROLE OF ALKALINE PHOSPHATASE IN OSTEOGENESISSiffertRobert S.From the Departments of Orthopedic Surgery and Pathology, The Mount Sinai Hospital, New York15195193541542610111950Copyright © Copyright, 1951, by The Rockefeller Institute for Medical Research New YorkThis article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).

The role of alkaline phosphatase in osteogenesis has been investigated by histochemical techniques with particular attention to its relationship to phosphate metabolism and matrix elaboration. The upper tibial epiphysis mainly, and other epiphyses as well of growing rabbits, and the costochondral junctions of newborn human beings were studied, as were bone grafts in growing rabbits. The findings in the newborn human beings were identical with those in the rabbits. Phosphatase activity and free phosphate localization do not universally coincide. The enzyme appears to be intimately related to preosseous cellular metabolism and to the elaboration of a bone matrix that is chemically calcifiable. It remains possible, however, that phosphatase may be in some way involved in making inorganic salts available to the calcifiable matrix. If this function does exist it is a secondary one, since the elaboration of bone matrix, which is always associated with phosphatase activity, can and does occur in the absence of calcification. Calcification may occur later, in the absence of the enzyme. There is evidence to suggest that cartilage matrix is utilized in the formation of bone matrix. Phosphatase is physiologically active only in the presence of living cells. Where it is demonstrable in the absence of living cells, as in the cartilage remnants of the metaphysis, it appears to be physiologically inactive. Since phosphatase is temporarily inactivated in weakly acid media, and readily reactivated by alkaline solutions it is possible that the enzyme might survive in a physiologically inactive state in weakly acid tissues, and yet remain capable of histochemical demonstration in vitro in an alkaline medium. Phosphatase is not related to the disappearance of chondroitin sulfate.