--- title: "R Notebook" output: html_notebook --- ```{r} library(tidyverse) library(ggplot2) library(PNWColors) ``` ```{r} setwd("/Users/isabelserrano/Documents/Science/Analyses/Conplastic_Strains/files_and_analyses/") outdir_figures = "/Users/isabelserrano/Documents/Science/Analyses/Conplastic_Strains/files_and_analyses/mutation_frequency_per_region/figures/" outdir_files = "/Users/isabelserrano/Documents/Science/Analyses/Conplastic_Strains/files_and_analyses/mutation_frequency_per_region/files/" supertable_file ="/Users/isabelserrano/Documents/Science/Analyses/Conplastic_Strains/files_and_analyses/input_files/supertable.txt" supertable = read.table(supertable_file, header=TRUE, stringsAsFactors = FALSE) ``` Normalize for sequencing depth: ```{r} norm_seq_depth = supertable %>% select(SAMPLE, STRAIN, TISSUE, AGE_BIN, REF, ALT, START, ALT_ALLELE_DEPTH, READ_DEPTH_AT_POS, CONDITION_MUT_FREQ_AT_POS) %>% #unique here to get rid of redundant mutations present at pos that overlap in genes unique() %>% select(SAMPLE, STRAIN, TISSUE, AGE_BIN, START, ALT_ALLELE_DEPTH, READ_DEPTH_AT_POS, CONDITION_MUT_FREQ_AT_POS) %>% group_by(SAMPLE, STRAIN, TISSUE, AGE_BIN, START, READ_DEPTH_AT_POS, CONDITION_MUT_FREQ_AT_POS) %>% summarise(SAMPLE_MUT_COUNT_AT_POS = sum(ALT_ALLELE_DEPTH)) %>% ungroup() %>% select(STRAIN, TISSUE, AGE_BIN, START, SAMPLE_MUT_COUNT_AT_POS, READ_DEPTH_AT_POS, CONDITION_MUT_FREQ_AT_POS) %>% group_by(STRAIN, TISSUE, AGE_BIN, START, CONDITION_MUT_FREQ_AT_POS) %>% summarise(CONDITION_MUT_COUNT_AT_POS = sum(SAMPLE_MUT_COUNT_AT_POS), CONDITION_READ_DEPTH_AT_POS = sum(READ_DEPTH_AT_POS)) %>% ungroup() %>% group_by(START) %>% mutate(MIN_READ_DEPTH_AT_POS = min(CONDITION_READ_DEPTH_AT_POS)) %>% mutate(FLOOR_MIN_MUT_FREQ_AT_POS = 1/MIN_READ_DEPTH_AT_POS) %>% mutate(CONDITION_MUT_COUNT_AT_POS = ifelse(CONDITION_MUT_FREQ_AT_POS < FLOOR_MIN_MUT_FREQ_AT_POS, 0, CONDITION_MUT_COUNT_AT_POS)) ``` Plotting time: Color palette ```{r} library(PNWColors) bay_pal <- pnw_palette(name="Bay", type="discrete") ``` Are there high heteroplasmic areas in the OriL? ```{r} norm_seq_depth %>% filter(START > 5158, START < 5191) %>% #this was the arbitrary frequency we define as being a high frequency position filter(CONDITION_MUT_FREQ_AT_POS > 0.001) %>% select(STRAIN, TISSUE, AGE_BIN, START) %>% unique() #5170 stands out as a high heteroplasmic variant ``` Pinpointing the high frequency region to the OriL region; we plot the neighboring regions to the OriL in order to contrast the mutation frequency across regions ```{r} ori_reg = norm_seq_depth %>% #this was the arbitrary frequency we define as being a high frequency position filter(CONDITION_MUT_FREQ_AT_POS < 0.001) %>% mutate(NORM_CONDITION_MUT_FREQ_AT_POS = CONDITION_MUT_COUNT_AT_POS/CONDITION_READ_DEPTH_AT_POS) %>% ungroup() %>% select(STRAIN, TISSUE, AGE_BIN, START, NORM_CONDITION_MUT_FREQ_AT_POS) %>% #spans mt-Ta to mt-Ty filter(START > 5000, START < 5400) %>% filter(NORM_CONDITION_MUT_FREQ_AT_POS > 0) ori_reg$STRAIN = factor(ori_reg$STRAIN, level = c("B6", "AKR", "ALR", "FVB", "NZB")) ori_reg$AGE_BIN = factor(ori_reg$AGE_BIN, level = c("YOUNG", "OLD")) ``` ```{r} ori_reg_plot = ggplot(ori_reg %>% mutate(AGE_LABEL = recode(AGE_BIN, "YOUNG" = "Young", "OLD" = "Old")), aes(x = START, y = NORM_CONDITION_MUT_FREQ_AT_POS, color = TISSUE)) ori_reg_plot = ori_reg_plot + geom_point(size = 0.5, alpha = 0.7) + #this highlights where the OriL is in the region geom_segment(x = 5159, xend = 5190, y = 0, yend = 0, color = "black") + theme_bw() + facet_grid(STRAIN~AGE_LABEL) + ylab("Mutation frequency at position") + xlab("Position on the mt-genome (bp)") + scale_color_manual(name = "Tissue", values= bay_pal[c(1,5,4)]) + guides(color = guide_legend(override.aes = list(size = 3))) + theme(strip.background=element_blank(), panel.grid=element_blank(), text = element_text(family = "sans"), axis.title = element_text(size = 10), strip.text.x = element_text(size = 10, vjust = 1), strip.text.y = element_text(size = 10, vjust = 1), axis.text.y=element_text(size = 8), axis.text.x=element_text(size = 8, angle = 45, vjust = 1, hjust = 1), legend.position = "bottom") pdf(paste(outdir_figures,"/mut_freq_oril_reg.pdf",sep=""),width=6,height=4) print(ori_reg_plot) dev.off() ``` Zooming into the OriL to find where in the OriL we have this high frequency cluster ```{r} oriL_zoomies = norm_seq_depth %>% #this was the arbitrary frequency we define as being a high frequency position filter(CONDITION_MUT_FREQ_AT_POS < 0.001) %>% mutate(NORM_CONDITION_MUT_FREQ_AT_POS = CONDITION_MUT_COUNT_AT_POS/CONDITION_READ_DEPTH_AT_POS) %>% ungroup() %>% select(STRAIN, TISSUE, AGE_BIN, START, NORM_CONDITION_MUT_FREQ_AT_POS) %>% #the OriL region filter(START>5158, START<5191) oriL_zoomies$STRAIN = factor(oriL_zoomies$STRAIN, level = c("B6", "AKR", "ALR", "FVB", "NZB")) oriL_zoomies$AGE_BIN = factor(oriL_zoomies$AGE_BIN, level = c("YOUNG", "OLD")) ``` ```{r} oriL_zoomies_plot = ggplot(oriL_zoomies %>% mutate(AGE_LABEL = recode(AGE_BIN, "YOUNG" = "Young", "OLD" = "Old")), aes(x = START, y = NORM_CONDITION_MUT_FREQ_AT_POS, color = TISSUE)) oriL_zoomies_plot = oriL_zoomies_plot + geom_point(size = 0.5, alpha = 0.7) + #geom_point(x = 9818, y = 0.00075, shape = 8, size = 0.7, color = "magenta") + theme_bw() + facet_grid(STRAIN~AGE_LABEL) + ylab("Mutation frequency at position") + xlab("Position on the mt-genome (bp)") + scale_color_manual(name = "Tissue", values= bay_pal[c(1,5,4)]) + scale_x_continuous(breaks = seq(5159, 5190,1)) + guides(color = guide_legend(override.aes = list(size = 3))) + theme(strip.background=element_blank(), panel.grid=element_blank(), text = element_text(family = "sans"), axis.title = element_text(size = 8), strip.text.x = element_text(size = 8, vjust = 1), strip.text.y = element_text(size = 8, vjust = 1), axis.text.y=element_text(size = 6), axis.text.x=element_text(size = 4, angle = 45, vjust = 1, hjust = 1), legend.position = "bottom") print(oriL_zoomies_plot) pdf(paste(outdir_figures,"/mut_freq_oriL.pdf",sep=""),width=4,height=3) print(oriL_zoomies_plot) dev.off() ``` Main figure OriL zoom in We average the mutation frequency at each position across tissues ```{r} main_fig_oriL = oriL_zoomies %>% ungroup() %>% filter(START > 5167,START < 5191) %>% select(STRAIN, AGE_BIN, START, NORM_CONDITION_MUT_FREQ_AT_POS) %>% group_by(STRAIN, AGE_BIN, START) %>% summarise(STRAIN_AVG_FREQ = mean(NORM_CONDITION_MUT_FREQ_AT_POS)) %>% mutate(STRAIN_LABEL = ifelse(STRAIN == "B6", "B6", "Conplastic")) %>% filter(STRAIN_AVG_FREQ > 0) %>% mutate(X_POS = ifelse(AGE_BIN == "YOUNG", START - 0.15, START + 0.15)) ``` ```{r} X_LABEL = (supertable %>% filter(START > 5167, START < 5191) %>% select(START, REF) %>% unique() %>% filter(nchar(REF) == 1) %>% mutate(X_LABEL = paste(REF, START, sep = "")))$X_LABEL ``` ```{r} main_fig_oriL_plot = ggplot(main_fig_oriL, aes(x = X_POS, y = STRAIN_AVG_FREQ, color = STRAIN, shape = AGE_BIN)) main_fig_oriL_plot = main_fig_oriL_plot + geom_point(size = 0.3) + geom_point(aes(x = 5170, y = 6e-4), shape = "*", color = "#ec008c", size = 2.5) + theme_bw(base_size = 6) + facet_wrap(STRAIN_LABEL~., nrow = 2) + ylab("Mutation frequency") + xlab("Position (bp)") + scale_color_manual(values = c("B6"= "#1d457f","AKR" = "#cc5c76", "ALR" = "#2f9e23", "FVB" = "#f57946", "NZB" = "#f7c22d")) + scale_shape_manual(labels = c("Young", "Old") , values = c(1,19)) + scale_x_continuous(breaks = seq(5168,5190,1), labels = X_LABEL) + scale_y_continuous(labels = function(x) format(x, scientific = TRUE)) + theme(strip.background=element_blank(), panel.grid=element_blank(), text = element_text(family = "sans"), axis.title = element_text(size = 5), strip.text.x = element_text(size = 6, vjust = 1), strip.text.y = element_text(size = 6, vjust = 1), axis.text.y=element_text(size = 3.5), axis.text.x=element_text(size = 3.5, angle = 45, vjust = 1, hjust = 1), legend.position = "none") pdf(paste(outdir_figures,"/main_fig_oriL_plot.pdf",sep=""),width=1.85,height=1.25) print(main_fig_oriL_plot) dev.off() pdf(paste(outdir_figures,"/leg_main_fig_oriL_plot.pdf",sep=""),width=3,height=1.75) print(main_fig_oriL_plot + guides(shape = guide_legend(override.aes = list(size = 2)), color = guide_legend(override.aes = list(size = 2))) + theme(legend.position = "right", legend.key.size = unit(0.25, "cm"))) dev.off() ``` We want to consolidate the mutations in the A repeat region because we can't with certainty narrow down to the exact base ```{r} A_repeat_region_mut_freq = norm_seq_depth %>% #this was the arbitrary frequency we define as being a high frequency position filter(CONDITION_MUT_FREQ_AT_POS < 0.001) %>% ungroup() %>% #zoom into the hotspot region filter(START > 5170, START < 5182) %>% select(STRAIN, TISSUE, AGE_BIN, CONDITION_MUT_COUNT_AT_POS, CONDITION_READ_DEPTH_AT_POS) %>% group_by(STRAIN, TISSUE, AGE_BIN) %>% summarise(REGION_MUT_COUNT = sum(CONDITION_MUT_COUNT_AT_POS), REGION_READ_DEPTH = sum(CONDITION_READ_DEPTH_AT_POS)) %>% mutate(REGION_MUT_FREQ = REGION_MUT_COUNT/REGION_READ_DEPTH) %>% ungroup() %>% select(STRAIN, AGE_BIN, REGION_MUT_FREQ) %>% group_by(STRAIN, AGE_BIN) %>% #averaging across tissues in a strain summarise(STRAIN_AVG_FREQ = mean(REGION_MUT_FREQ)) %>% filter(STRAIN_AVG_FREQ > 0) %>% mutate(STRAIN_LABEL = ifelse(STRAIN == "B6", "B6", "Conplastic")) %>% mutate(START = 5171) ``` ```{r} nonA_repeat_region = main_fig_oriL %>% filter(START < 5171 | START > 5181) %>% select(STRAIN, AGE_BIN, START, STRAIN_AVG_FREQ, STRAIN_LABEL) ``` Merging our nonA and A repeat regions ```{r} region_info_df = rbind(nonA_repeat_region, A_repeat_region_mut_freq) ``` We need to create a pseudo START so that we can avoid a gap in plotting ```{r} start_pseudo = supertable %>% filter(START > 5167, START < 5191) %>% select(START, REF) %>% unique() %>% filter(nchar(REF) == 1) %>% mutate(COMP_REF = case_when(REF == "C" ~ "G", REF == "G" ~ "C", REF == "T" ~ "A", TRUE ~ "T")) %>% mutate(X_LABEL = paste(COMP_REF, START, sep = "")) %>% filter(!(START > 5171 & START < 5182)) %>% mutate(START_PSEUDO = seq(1,13)) %>% mutate(X_LABEL = ifelse(START == 5171, "T(5171-5181)", X_LABEL)) ``` ```{r} region_plotting_df = region_info_df %>% left_join(start_pseudo, by = ("START")) %>% mutate(X_POS = ifelse(AGE_BIN == "YOUNG", START_PSEUDO - 0.15, START_PSEUDO + 0.15)) region_plotting_df$STRAIN = factor(region_plotting_df$STRAIN, level = c("B6", "AKR", "ALR", "FVB", "NZB")) region_plotting_df$AGE_BIN = factor(region_plotting_df$AGE_BIN, level = c("YOUNG", "OLD")) ``` Plotting our region mut freq ```{r} oriL_region_plot = ggplot(region_plotting_df, aes(x = X_POS, y = STRAIN_AVG_FREQ, color = STRAIN, shape = AGE_BIN)) oriL_region_plot = oriL_region_plot + geom_point(size = 0.3) + geom_point(aes(x = 3, y = 6e-4), shape = "*", color = "#ec008c", size = 2.5) + theme_bw(base_size = 6) + facet_wrap(STRAIN_LABEL~., nrow = 2) + ylab("Mutation frequency") + xlab("Position (bp)") + scale_color_manual(values = c("B6"= "#1d457f","AKR" = "#cc5c76", "ALR" = "#2f9e23", "FVB" = "#f57946", "NZB" = "#f7c22d")) + scale_shape_manual(labels = c("Young", "Old") , values = c(1,19)) + scale_x_continuous(breaks = seq(1,13), labels = start_pseudo$X_LABEL) + scale_y_continuous(labels = function(x) format(x, scientific = TRUE)) + theme(strip.background=element_blank(), panel.grid=element_blank(), text = element_text(family = "sans"), axis.title = element_text(size = 5), strip.text.x = element_text(size = 6, vjust = 1), strip.text.y = element_text(size = 6, vjust = 1), axis.text.y=element_text(size = 3.5), axis.text.x=element_text(size = 3.5, angle = 45, vjust = 1, hjust = 1), legend.position = "none") pdf(paste(outdir_figures,"/region_oriL_plot.pdf",sep=""),width=1.85,height=1.25) print(oriL_region_plot) dev.off() pdf(paste(outdir_figures,"/leg_region_oriL_plot.pdf",sep=""),width=3,height=1.75) print(main_fig_oriL_plot + guides(shape = guide_legend(override.aes = list(size = 2)), color = guide_legend(override.aes = list(size = 2))) + theme(legend.position = "right", legend.key.size = unit(0.25, "cm"))) dev.off() ``` Types of mutations at the Ori region ```{r} ori_mut_type = supertable %>% select(SAMPLE, STRAIN, TISSUE, AGE_BIN, START, REF, ALT, ALT_ALLELE_DEPTH, READ_DEPTH_AT_POS, CONDITION_MUT_FREQ_AT_POS) %>% unique() %>% filter(CONDITION_MUT_FREQ_AT_POS < 1e-3) %>% filter(START > 5167, START < 5191) %>% mutate(MUTATION = paste(REF,ALT, sep = ">")) %>% select(STRAIN, TISSUE, AGE_BIN, START, MUTATION, ALT_ALLELE_DEPTH, READ_DEPTH_AT_POS) %>% group_by(STRAIN, TISSUE, AGE_BIN, START, MUTATION) %>% summarise(COND_ALLELE_COUNT = sum(ALT_ALLELE_DEPTH), COND_READ_DEPTH = sum(READ_DEPTH_AT_POS)) %>% filter(COND_ALLELE_COUNT > 0) %>% group_by(STRAIN, TISSUE, AGE_BIN) %>% mutate(TOTAL_MUTS = sum(COND_ALLELE_COUNT)) %>% select(STRAIN, TISSUE, AGE_BIN, MUTATION, COND_ALLELE_COUNT, TOTAL_MUTS) %>% ungroup() %>% group_by(STRAIN, TISSUE, AGE_BIN, MUTATION, TOTAL_MUTS) %>% #here we count how many of each allele is present across the entire region summarise(MUT_TYPE_TOTAL_COUNT = sum(COND_ALLELE_COUNT)) %>% mutate(MUT_PROP = MUT_TYPE_TOTAL_COUNT/TOTAL_MUTS) ori_mut_type$STRAIN = factor(ori_mut_type$STRAIN, level = c("B6", "AKR", "ALR", "FVB", "NZB")) ori_mut_type$AGE_BIN = factor(ori_mut_type$AGE_BIN, level = c("YOUNG", "OLD")) ``` ```{r} supertable %>% select(SAMPLE, STRAIN, TISSUE, AGE_BIN, START, REF, ALT, ALT_ALLELE_DEPTH, READ_DEPTH_AT_POS, CONDITION_MUT_FREQ_AT_POS) %>% unique() %>% filter(CONDITION_MUT_FREQ_AT_POS < 1e-3) %>% filter(START == 5169) %>% mutate(MUTATION = paste(REF,ALT, sep = ">")) %>% select(STRAIN, TISSUE, AGE_BIN, START, MUTATION, ALT_ALLELE_DEPTH, READ_DEPTH_AT_POS) %>% group_by(STRAIN, TISSUE, AGE_BIN, START, MUTATION) %>% summarise(COND_ALLELE_COUNT = sum(ALT_ALLELE_DEPTH), COND_READ_DEPTH = sum(READ_DEPTH_AT_POS)) %>% filter(COND_ALLELE_COUNT > 0) %>% mutate(MUT_FREQ = COND_ALLELE_COUNT/COND_READ_DEPTH) ``` ```{r} ori_mut_type_plot = ggplot(ori_mut_type, aes(x = STRAIN, y = MUT_PROP, fill = MUTATION)) + geom_bar(position = "stack", stat = "identity") + facet_grid(AGE_BIN~TISSUE) + xlab("Strain") + ylab("Allele mutation frequency") + theme_bw(base_size = 10) + theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1), strip.background = element_blank()) pdf(paste(outdir_figures,"/mut_type_oril_plot.pdf",sep=""),width=5,height=5) print(ori_mut_type_plot) dev.off() ``` ```{R} supertable %>% filter(START == 5170) ```