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Abstract 

Metacognition, or the ability of a system to reason about its own cognitive processes, 
is increasingly recognized as an essential component for the development of robust, 
adaptable, and safe artificial intelligence (AI) systems. However, current 
computational approaches to metacognition remain fragmented, divided between 
classic symbolic architectures, which offer explicit control but can be brittle, and 
modern sub-symbolic models, which demonstrate flexible learning but lack 
transparency and reliable self-assessment mechanisms. This paper addresses this 
"Metacognitive Gap" by proposing a balanced path forward: a Hybrid and Hierarchical 
Metacognitive Architecture (HHMA). The HHMA is a novel framework that integrates 
principles from cognitive psychology and computer science to create a multi-level 
system. The lowest level of the architecture (Level 1) implements probabilistic 
monitoring, inspired by Bayesian models of human metacognition, to generate fast, 
continuous signals of confidence and uncertainty about the performance of the core 
cognitive system (Level 0). The highest level (Level 2) uses a symbolic reasoning 
engine, informed by a declarative model of the agent itself, to perform explicit 
diagnostics and exert strategic control. It is argued that this hybrid structure, which 
computationally implements dual-process theory, reconciles the strengths of 
competing paradigms. By combining sub-symbolic monitoring with symbolic control, 
the HHMA offers a promising path to improve the adaptability, explainability, and 
safety of AI, addressing some of the most pressing challenges in the field of assured 
autonomy and human-machine collaboration. 

 

 

 

 

 



1. Introduction 

 

1.1. The Imperative of Metacognition in Artificial Intelligence 

 

As artificial intelligence (AI) systems transcend the boundaries of laboratory 
environments and take on increasingly autonomous roles in complex, high-stakes 
domains such as autonomous vehicles, medical diagnosis, and collaborative robotics, 
the need for higher-order cognitive capabilities becomes paramount.1 The mere 
execution of pre-programmed tasks is no longer sufficient. Future systems must 
possess the ability to self-monitor, self-regulate, and adapt in real-time to dynamic 
and unpredictable environments. This ability to "think about one's own thinking" is the 
essence of metacognition.3 

The integration of metacognitive principles into AI is not a theoretical luxury but a 
practical necessity driven by the demands of autonomy. An autonomous system 
operating in the real world inherits the need for the metacognitive functions that a 
human operator would otherwise perform: planning strategies, monitoring 
performance, assessing information quality, and correcting errors.1 Failures in 
autonomous systems are often, at their core, metacognitive failures: a system that 
does not recognize it is operating outside its competency envelope, that fails to 
monitor the degradation of its own sensors, or that fails to adapt its strategy to a 
novel situation is destined for failure.1 Consequently, computational metacognition is 
fundamental to the engineering of "assured autonomy"—systems that can provide 
guarantees about their performance and safety, even in unforeseen circumstances.6 
The benefits are multiple and transformative, including enhanced safety and reliability 
through real-time error detection and correction, improved transparency and 
explainability by providing insights into their decision-making processes, and 
optimized resource management by dynamically allocating their computational 
resources.1 

 

1.2. Fundamental Concepts from Cognitive Psychology 

 

To build a solid foundation for computational metacognition, it is imperative to draw 
from the field that has studied it most extensively: cognitive psychology. The seminal 



work of Nelson and Narens (1990) provides a theoretical framework that has become 
the cornerstone of metacognition research and serves as an architectural blueprint 
for its computational implementation.9 Their model posits a fundamental distinction 
between two levels of information processing: 

● The Object-Level: This is the level where primary cognitive processes occur. It 
includes actions like perceiving the world, retrieving information from memory, 
reasoning about a problem, and executing physical actions. It is the level of 
"doing".10 

● The Meta-Level: This level contains a model of the object-level. Its function is 
not to interact directly with the world, but to observe and influence the 
object-level. It is the level of "thinking about doing".3 

The dynamic interaction between these two levels is governed by two crucial 
information flows: 

1. Monitoring: This is the upward flow of information, from the object-level to the 
meta-level. Through monitoring, the meta-level is informed about the state and 
progress of the object-level's cognitive processes. This can include assessing the 
ease of learning new material, the confidence in a decision made, or the feeling 
of knowing an answer that cannot be immediately recalled (the 
"tip-of-the-tongue" phenomenon).9 

2. Control: This is the downward flow of information, from the meta-level to the 
object-level. Based on the information obtained through monitoring, the 
meta-level can exert control over the object-level to modify its behavior. Control 
actions can include initiating a process (e.g., starting to study), continuing a 
process (e.g., continuing to try to solve a problem), or terminating a process (e.g., 
giving up). It can also involve changing strategies, such as re-reading a paragraph 
that was not understood.3 

This framework is not just a psychological description; it is a functional specification 
for an information-processing architecture. It defines the necessary components (an 
object-level process, a meta-level model) and the communication channels between 
them. As such, the challenge for modern AI is not to invent a new model of 
metacognition from scratch, but to find the correct computational instantiations for 
the components and flows already specified in this fundamental psychological 
framework. 

 

 



1.3. The Central Problem: The Metacognitive Gap and the Paradox of Modern AI 

 

Despite the clarity of the Nelson and Narens framework, the field of computational 
metacognition remains remarkably fragmented. Systematic reviews of the literature 
reveal a landscape of terminological inconsistency, an absence of standardized 
evaluation benchmarks, and a tendency for researchers to "reinvent the wheel" rather 
than building on previous work.8 This disconnect between the clear theoretical model 
and the ad-hoc computational state-of-the-art can be termed 

The Metacognitive Gap. 

This gap is exacerbated by a phenomenon that can be called The Paradox of 
Modern AI. Contemporary systems, particularly Large Language Models (LLMs), 
exhibit paradoxical behavior. On the one hand, they can be prompted to perform tasks 
that resemble sophisticated metacognitive reflection, such as evaluating the quality of 
their own responses, explaining their reasoning, or iteratively refining their results.15 
Recent investigations have even demonstrated an incipient ability to monitor and 
control their own internal neural activations through neurofeedback paradigms.18 On 
the other hand, these same systems suffer from significant and well-documented 
"metacognitive deficiencies".19 They lack intrinsic and robust mechanisms to "know 
what they don't know," which leads to notorious failures like hallucination (generating 
factually incorrect information with high confidence) and consistently poor 
confidence calibration.19 Their metacognition is often described as "inference about 
inference"—using the same transformer architecture to reason about 
reasoning—rather than a specialized and dedicated process, as is believed to occur in 
humans.19 This paradox underscores the need for architectures that go beyond 
superficial, prompt-induced self-reflection to genuine, principled self-regulation. 

 

1.4. Thesis and Roadmap 

 

This paper argues that a balanced and robust path forward, which aims to bridge the 
metacognitive gap and resolve the paradox of modern AI, lies in a Hybrid and 
Hierarchical Metacognitive Architecture (HHMA). This architecture is designed to 
reconcile the strengths of different computational paradigms by assigning them to 
distinct and interactive levels of metacognitive processing. The central thesis is that 
by combining probabilistic and sub-symbolic monitoring with explicit and symbolic 



control, we can create AI systems that not only perform tasks intelligently but also 
understand the limits of their own intelligence. 

To develop this argument, the paper is structured as follows. Section 2 delves into the 
theoretical foundations of metacognition and conducts a critical review of the state of 
the art, examining implementations in classic cognitive architectures, 
meta-reinforcement learning, and LLMs. Section 3 presents the central proposal of 
the paper: the Hybrid and Hierarchical Metacognitive Architecture (HHMA), detailing 
its multi-level structure and the dynamics of its monitor-control cycle. Section 4 
analyzes how the HHMA addresses key AI challenges, compares it with alternative 
architectures, and discusses its implications for assured autonomy, particularly in 
robotics. Finally, Section 5 concludes with a summary of the contributions and a 
reflection on the broader scientific and philosophical implications of creating AI with 
robust metacognitive capabilities. 

 

2. Theoretical Foundations and State of the Art in Computational 
Metacognition 

 

To build a new architecture, it is essential to first deeply understand the theoretical 
foundations and the current landscape of existing implementations. This section 
delves into the Nelson and Narens paradigm, analyzes its instantiation in classic 
cognitive architectures, and examines how metacognitive functions manifest in 
contemporary AI paradigms, culminating in a synthesis of the gaps that motivate the 
need for a new approach. 

 

2.1. A Deep Dive into the Foundational Paradigm 

 

The Nelson and Narens (1990) framework is more than a simple dichotomy between 
meta and object levels. It encompasses a variety of specific metacognitive judgments 
that occur at different stages of the learning and memory process. For example, 
Ease-of-Learning (EOL) judgments are made before acquisition, where an 
individual predicts the difficulty of learning new material. Judgments of Knowing 
(JOKs) occur during retrieval, when an individual, unable to recall a piece of 



information, predicts the likelihood of recognizing it later.13 These different types of 
judgments highlight that monitoring is not a monolithic process, but rather a family of 
assessments tailored to different cognitive contexts. 

Furthermore, the framework elegantly addresses a long-standing philosophical 
challenge known as "Comte's paradox." Auguste Comte argued that scientific 
introspection was impossible because the mind could not divide itself in two for one 
part to observe the other.10 The Nelson and Narens model resolves this paradox by not 
requiring consciousness to observe itself simultaneously. Instead, it posits that the 
meta-level operates on a model of the object-level. This model can be a memory 
representation of the traces of recent cognitive activity, allowing reflection to occur 
on a record of thought, rather than the act of thinking itself in real-time. This 
separation of levels makes the scientific study of metacognition conceptually 
tractable and computationally implementable.10 

 

2.2. Metacognition in Classic Cognitive Architectures 

 

Classic cognitive architectures, developed primarily since the 1980s, were among the 
first attempts to create unified models of human cognition and, as such, had to deal, 
implicitly or explicitly, with the issue of metacognition. These architectures reveal a 
fundamental tension in design: the balance between psychological fidelity (modeling 
human cognition, including its limitations) and AI capability (building the most 
performant agent possible). 

A comparison of the metacognitive capabilities in major cognitive architectures 
reveals distinct approaches. 

ACT-R (Adaptive Control of Thought—Rational) primarily aims for the modeling of 
human behavior with high psychological fidelity.21 Its approach to metacognition is 
largely implicit and emergent. The central metacognitive mechanism is the utility 
learning of production rules, which is an implicit process.21 Monitoring is implicit 
through the activation and utility values, reflecting past experience. Control is 
exercised through the probabilistic selection of rules based on their learned utility. 
The main strength of ACT-R is its psychological plausibility and its ability to model 
gradual learning. However, it has a significant limitation in its limited capacity for 
deliberate and explicit control, and its meta-reasoning capabilities have been 



relatively unexplored.23 

Soar (State, Operator, And Result), in contrast, is designed more as an architecture 
for general AI, aimed at solving a wide range of complex problems.21 Its approach to 
metacognition is more 

explicit and deliberate. The central metacognitive mechanism is the use of 
sub-goals driven by impasses, which is an explicit function.23 Monitoring involves the 
explicit detection of knowledge gaps, which trigger these impasses.23 Control is then 
handled through deliberate reasoning within these sub-states to resolve the impasse. 
Soar's main strength is its flexible and powerful meta-reasoning for novel problems. 
Its primary limitation is that it is less psychologically constrained than other models, 
for instance, by assuming an unlimited working memory.25 

MIDCA (Metacognitive Integrated Dual-Cycle Architecture) stands out for being 
designed explicitly around the Nelson and Narens framework, aiming for a direct 
implementation of metacognitive theory for robust AI.2 Its central metacognitive 
mechanism is an explicit monitor-control cycle.26 Monitoring is achieved through 
the explicit detection of anomalies in the cognitive trace, such as goal failures.5 
Control is exerted by generating new cognitive goals to repair the failure.26 The main 
strength of MIDCA is its direct and transparent implementation of the foundational 
theory. Its main limitation is its symbolic brittleness in noisy, high-dimensional 
environments. 

 

2.3. Metacognitive Functions in Contemporary AI Paradigms 

 

While classic architectures provide structured models of metacognition, modern AI 
paradigms, predominantly sub-symbolic, exhibit behaviors that can be interpreted 
through a metacognitive lens, though often in a less explicit manner. The field can be 
seen as a spectrum ranging from highly implicit to highly explicit. 

 

2.3.1. Meta-Reinforcement Learning (Meta-RL) 

 

Meta-RL embodies the principle of "learning to learn".28 Instead of training an agent to 
master a single task, Meta-RL trains an agent on a distribution of related tasks, with 



the goal of enabling it to adapt quickly to new, unseen tasks with minimal 
experience.28 A particularly relevant form of Meta-RL is Gradient-Based Meta-RL.31 
In this paradigm, there are two optimization loops. The inner loop is standard 
reinforcement learning (RL), where the agent's policy parameters are updated to 
maximize reward on a specific task. The outer loop, however, optimizes the 
meta-parameters of the learning process itself.34 

These meta-parameters can be the learning rate, the discount factor (γ), or even the 
entire objective function that the agent is optimizing.31 The update of the 
meta-parameters is done by descending the gradient of the inner-loop performance 
with respect to the meta-parameters themselves. Essentially, the agent learns, 
through experience, how to learn best. This can be seen as a form of implicit and 
adaptive metacognitive control over its own learning strategy. The agent does not 
explicitly reason "my learning strategy is sub-optimal," but its learning algorithm 
evolves to become more effective in its environment. 

 

2.3.2. Large Language Models (LLMs) 

 

LLMs present a fascinating and paradoxical case study. As mentioned, they can be 
prompted to perform tasks that resemble metacognitive reflection, such as 
self-correction and evaluation.15 This capability is often a form of "staged 
metacognition," where the model leverages the vast patterns of text in its training data 
that describe human reflection and evaluation, rather than engaging in an intrinsic 
process of self-monitoring. 

However, research is beginning to probe their deeper metacognitive capabilities. 
Recent studies using neurofeedback paradigms, where the model is trained to 
explicitly report and control the activation patterns in its own neurons, demonstrate 
that LLMs possess a measurable capacity for some degree of internal monitoring and 
control.18 However, this ability appears to be limited to a low-dimensional 
"metacognitive space," meaning they can only monitor a subset of their neural 
mechanisms.18 This finding is consistent with the observed metacognitive deficiencies 
in LLMs: they lack a global, reliable mechanism for assessing their own uncertainty or 
the veracity of their knowledge, which leads to poor confidence calibration and 
hallucinations.19 Their metacognition is more a form of inference about their own 
computation than a separate, specialized monitoring process.19 



 

2.3.3. Metacognition in Robotics 

 

In robotics, metacognition is less about philosophical introspection and more about 
survival and robustness in the physical world.37 Metacognitive architectures for robots 
aim to improve adaptability, fault tolerance, and safety.5 For example, a robot 
equipped with metacognitive capabilities can monitor the state of its own sensors and 
actuators. If it detects a degradation in the quality of data from a sensor (e.g., noise in 
the camera due to fog), it can adapt its processing strategy or rely more on other 
sensors.1 

Architectures like HARMONIC (Human-AI Robotic Team Member Operating with 
Natural Intelligence and Communication) implement a dual-layer approach that 
resembles a dual-process theory.39 A low-level tactical layer handles reactive, 
skill-based control (analogous to System 1), while a high-level strategic cognitive layer 
(based on the OntoAgent architecture) handles deliberate reasoning, planning, and 
natural language communication.39 This strategic layer can reason about the team's 
plans and goals, providing a form of metacognition geared towards collaboration and 
explanation.40 Research in cognitive robotics highlights that metacognition is a key 
component for generalized embodied intelligence, enabling agents to deal with the 
uncertainty and novelty of the real world.38 

 

2.4. Synthesis of Gaps and the Need for a New Approach 

 

The review of the state of the art reveals a field of computational metacognition rich in 
ideas but lacking a unifying framework. Systematic reviews confirm this 
fragmentation, highlighting terminological inconsistency and a lack of comparative 
evaluation as major obstacles to progress.8 Existing approaches represent partial 
solutions that lie at different points on the implicit-explicit spectrum: 

● Classic Symbolic Architectures (ACT-R, Soar, MIDCA) offer explicit and 
scrutable control mechanisms but can be brittle and computationally expensive, 
struggling to handle the uncertainty and high dimensionality of real-world data. 

● Modern Sub-symbolic Paradigms (Meta-RL, LLMs) demonstrate remarkable 
learning and adaptation from raw data, but their metacognitive mechanisms are 



largely implicit, opaque, and ultimately unreliable. They "feel" rather than "know," 
and their feelings are often poorly calibrated. 

This dichotomy points to a clear need: an architecture that combines the best of both 
worlds. We need a system that can leverage the power of sub-symbolic learning to 
monitor performance in complex, noisy environments, while using the precision of 
symbolic reasoning for deliberate, transparent, and robust control. A fast, reactive 
cognitive task might benefit from implicit, learned control (as in Meta-RL), while a 
complex, novel problem requires explicit, deliberate diagnosis (as in MIDCA). A truly 
balanced and effective architecture should not choose one point on the spectrum but 
should embody the entire spectrum. It is this need that the Hybrid and Hierarchical 
Metacognitive Architecture (HHMA), proposed in the next section, seeks to satisfy. 

 

3. Proposal of a Hybrid and Hierarchical Metacognitive 
Architecture (HHMA) 

 

To bridge the gap between symbolic and sub-symbolic approaches and to provide a 
unified framework for computational metacognition, the Hybrid and Hierarchical 
Metacognitive Architecture (HHMA) is proposed. This architecture does not seek to 
invent a new type of metacognition, but rather to organize existing computational 
paradigms into a coherent and synergistic structure, inspired directly by both the 
Nelson and Narens framework and dual-process theories of human cognition. 

 

3.1. Fundamental Design Principles 

 

The design of the HHMA is guided by four fundamental principles aimed at creating a 
balanced, robust, and transparent system: 

1. Hierarchical Separation of Concerns: It is recognized that different 
computational paradigms are better suited for different types of tasks. The HHMA 
assigns these tasks to distinct layers. Learning from high-dimensional, noisy data 
is relegated to sub-symbolic components, while deliberate reasoning and 
strategic decision-making are managed by symbolic components. 

2. Probabilistic Monitoring: Uncertainty is an inescapable feature of cognition and 



interaction with the real world. Instead of relying on binary "success/failure" flags, 
the HHMA represents monitoring signals as probability distributions. This allows 
for a more nuanced self-assessment, capturing degrees of confidence and 
uncertainty rather than absolute certainties. 

3. Explicit Self-Modeling: A robust metacognitive system must reason about 
something concrete. The HHMA includes an explicit, declarative, and inspectable 
self-model—essentially, an ontology of the agent's own components, capabilities, 
goals, and performance envelopes. This self-model serves as the knowledge 
base for deliberate metacognitive reasoning. 

4. Dynamic Allocation of Control: The meta-level does not just act; it decides how 
to act. Instead of having a single response to a failure, the HHMA possesses a 
repertoire of control strategies (e.g., replan, seek information, adjust parameters, 
request human help) and selects the most appropriate one based on its diagnosis 
of the situation. 

 

3.2. The Multi-Level Structure 

 

The HHMA is composed of three hierarchical levels, each with a distinct function and 
implemented with the most suitable computational paradigm. This structure maps 
directly to dual-process theory, providing a computational analog for the interaction 
between fast, intuitive cognition (System 1) and slow, deliberate thought (System 2).41 

 

3.2.1. Level 0 (Object-Level): The Cognitive Core 

 

This is the primary "worker" system, responsible for first-order cognition. Level 0 is 
implementation-agnostic; it can be a deep neural network for perception tasks, an 
LLM for language processing, a planning system for robotics, or any combination 
thereof. Its function is to interact with the task or environment. Its internal states (e.g., 
neuron activations, output distribution entropy, reasoning traces) and its performance 
outcomes (e.g., decisions, actions, task success/failure) constitute the raw data for 
metacognitive monitoring. 

 



3.2.2. Level 1 (Implicit Metacognitive Level): The Probabilistic Monitor 

 

This level operates in parallel with Level 0 and serves as the architecture's 
computational "System 1." Its function is to generate fast, continuous, and 
sub-symbolic signals of performance and uncertainty. 

● Computational Paradigm: Level 1 is built upon Bayesian models of 
metacognition.44 These models are ideal for reasoning about uncertainty. Level 1 
receives the internal states and outcomes of Level 0 as input and uses Bayesian 
inference to compute a posterior distribution over the agent's confidence or 
probability of success. It models the computational "feeling of knowing" or 
"feeling of error." For example, it might learn a relationship between the entropy 
of a classifier's softmax layer (an internal state) and the probability of that 
classification being correct (performance). 

● Key Function: A central function of Level 1 is to continuously compute metrics 
analogous to meta-d' from signal detection theory.48 Meta-d' quantifies an 
observer's sensitivity to their own correct versus incorrect decisions. By 
calculating a metric like the meta-d'/d' ratio, Level 1 can assess its own monitoring 
efficiency, providing a signal of how well it can distinguish the correct and 
incorrect states of Level 0. The output of Level 1 is not a decision, but a 
continuous stream of probabilistic signals (e.g., "confidence of 0.95 in this 
answer," "uncertainty of 0.8 in the current world state"). 

 

3.2.3. Level 2 (Explicit Metacognitive Level): The Symbolic Controller 

 

This level is the architecture's deliberate "thinker," its computational "System 2." It is 
selectively activated when signals from Level 1 indicate a problem that requires 
deeper reflection. 

● Computational Paradigm: Level 2 is inspired by symbolic cognitive architectures 
like MIDCA and Soar.23 It uses a knowledge base and a reasoning engine (e.g., a 
production system, a logical reasoner, or a planner). 

● Key Components: 
○ Declarative Self-Model: Level 2 maintains an explicit knowledge base that 

describes the agent itself. This ontology includes information about: the 
components of Level 0 (e.g., "ResNet50 vision algorithm"), their capabilities 



and limitations ("92% accuracy in good lighting conditions, degrades in low 
light"), and its current goals. 

○ Diagnosis: Level 2 receives the probabilistic signals from Level 1 as its 
primary input. It uses its reasoning engine to diagnose the likely cause of 
anomalous signals. For example, a diagnostic rule might be: IF 
(visual_uncertainty_signal(Level 1) > 0.8) AND (light_sensor_input < threshold) 
THEN (likely_cause = 'low_illumination'). 

○ Strategic Control: Based on its diagnosis, Level 2 selects and initiates a 
high-level control action. These are not motor actions, but commands to 
modify the system's operation. Examples include: "switch to a more robust 
but computationally more expensive vision algorithm," "initiate an 
information-seeking action to reduce uncertainty" (e.g., telling a robot to turn 
on a light), or "adjust the hyperparameters of the Level 0 model." 

The specification of the Hybrid Hierarchical Metacognitive Architecture (HHMA) can 
be described textually. At the base is Level 0 (Object), whose main function is task 
execution. It is primarily implemented using deep neural networks, LLMs, or planners. 
It receives control signals from Level 2 and provides performance data and internal 
states as output to Level 1. Its psychological analog is cognition, encompassing 
perception, action, and memory. 

Above this is Level 1 (Implicit Meta-Cognitive), which performs probabilistic 
performance monitoring. This level is implemented using Bayesian inference and 
probabilistic models. It takes the internal states and outputs from Level 0 as input and 
sends probabilistic signals, such as confidence and uncertainty, to Level 2. This level is 
analogous to the psychological concepts of the feeling of knowing or intuition, often 
associated with System 1 thinking. 

At the top is Level 2 (Explicit Meta-Cognitive), responsible for symbolic diagnosis 
and strategic control. It is implemented using symbolic logic or production systems. It 
receives probabilistic signals from Level 1 and, in turn, sends control signals to Level 0 
and calibration signals to Level 1. This level corresponds to deliberate reasoning, or 
System 2, in psychological models. 

 

3.3. The Dynamics of the Monitor-Control Cycle in HHMA 

 

The interaction between the levels of the HHMA creates a dynamic and sophisticated 



feedback loop that goes beyond a simple monitor-control cycle. 

1. Bottom-Up Monitoring: Level 0 executes its cognitive task. In parallel and 
continuously, Level 1 observes the internal states and outcomes of Level 0. It 
processes this information through its Bayesian models to generate a continuous 
stream of probabilistic signals representing confidence, uncertainty, surprise, or 
other metacognitive assessments. 

2. Triggering Deliberation: Level 2 monitors this stream of signals from Level 1. 
Most of the time, if the signals are within expected limits (e.g., high confidence, 
low uncertainty), Level 2 remains inactive, allowing the system to operate 
efficiently and reactively. However, if a signal crosses a predefined threshold (e.g., 
confidence drops below 70% or uncertainty remains above 90% for a prolonged 
period), this acts as a trigger, activating the explicit reasoning process of Level 2. 
This triggering mechanism is analogous to an impasse in Soar. 

3. Top-Down Control: Once activated, Level 2 uses its reasoning engine to 
integrate the anomalous signals from Level 1 with its self-model and current goals 
to diagnose the problem and formulate a control strategy. This strategy is then 
translated into a concrete command that directly modifies the operation of Level 
0 (e.g., by changing its hyperparameters, providing it with a new intermediate 
goal, or swapping the model being used). 

4. The Calibration Loop (Meta-Metacognition): A crucial and innovative aspect of 
the HHMA is a second feedback loop that implements meta-metacognition—the 
ability to reflect on its own reflection processes.49 Control is not only top-down. 
Level 2 also evaluates the long-term accuracy of the signals from Level 1. It 
compares the confidence predictions of Level 1 with the actual outcomes of Level 
0 over time. If it detects a systematic bias (e.g., Level 1 is consistently 
overconfident, a common problem in human-AI teams 51), Level 2 can initiate a 
control action to 
recalibrate the priors or parameters of the Bayesian models in Level 1. This 
calibration loop ensures that the monitoring system itself remains accurate and 
reliable in the long term, allowing the agent to learn not only about the world but 
also about the accuracy of its own self-assessment. This is a much deeper form 
of self-improvement than simple error correction. 

 

3.4. Neuro-Symbolic Rationality and the Link to TRAP 

 

The HHMA is fundamentally a neuro-symbolic architecture, although the term is used 



broadly here to refer to the integration of sub-symbolic (neural/probabilistic) and 
symbolic approaches. Level 1 represents the "neuro" (or, more accurately, 
probabilistic) component, excellent at learning patterns from complex data. Level 2 
represents the "symbolic" component, which provides explicit, scrutable, and 
rule-based reasoning. This integration allows the HHMA to be a "balanced" model. 

Furthermore, the HHMA architecture provides a concrete implementation of the TRAP 
framework for metacognitive AI, which advocates for the integration of Transparency, 
Reasoning, Adaptation, and Perception.7 

● Transparency: Is provided by the explicit and inspectable self-model in Level 2. 
When the system makes a metacognitive decision, it can expose the symbolic 
reasoning trace that led to that decision. 

● Reasoning: Is the central function of the symbolic engine in Level 2, which 
performs diagnosis and strategic planning. 

● Adaptation: Is performed through the control actions initiated by Level 2 to 
modify Level 0 and recalibrate Level 1, allowing the system to adjust to changing 
environments and internal failures. 

● Perception: Is the function of Level 0, whose reliability is continuously monitored 
by Level 1 and understood in its context (e.g., lighting conditions) by Level 2. 

By instantiating these four pillars in a functional architecture, the HHMA offers a 
practical path for building AI systems that are not only performant but also 
understandable and reliable. 

 

4. Analysis and Discussion 

 

The proposal of the Hybrid and Hierarchical Metacognitive Architecture (HHMA) aims 
to provide a structured and balanced solution to the challenges of metacognition in 
AI. This section analyzes how the HHMA addresses key problems, compares it with 
alternative approaches, explores its implications for critical application domains like 
robotics, and acknowledges the open challenges and future directions for research. 

 

4.1. How HHMA Addresses Key AI Challenges 



 

The unique structure of the HHMA is designed to directly address several of the most 
pressing limitations of current AI systems. 

● Improving Adaptability: Adaptability is at the core of the HHMA's design. 
Instead of relying on a single model or algorithm, the system can dynamically 
adapt its cognitive strategy. Level 1 provides a continuous assessment of 
performance in the current context. Based on this assessment, Level 2 can make 
a strategic decision to change the behavior of Level 0. For example, if an LLM at 
Level 0 starts generating responses with low confidence (detected by Level 1) for 
a certain type of question, Level 2 can intervene to apply a control strategy, such 
as forcing the LLM to use a more explicit reasoning process like chain-of-thought, 
or consulting an external knowledge base before responding. 

● Enhancing Explainability and Transparency: One of the biggest criticisms of 
deep learning models is their "black box" nature. The HHMA addresses this 
problem through its symbolic layer. When the system makes a significant 
metacognitive decision (e.g., ignoring sensor data, changing strategy), Level 2 
can generate a logical and human-understandable reasoning trace that explains 
why that decision was made. The explanation would not be a post-hoc 
rationalization, but the actual record of the decision process, for example: "I 
switched to the conservative control algorithm because Level 1 reported that the 
uncertainty in my location estimate exceeded the safety threshold of 0.85".1 

● Optimizing Resource Management: Many advanced cognitive processes are 
computationally expensive. A system that uses them indiscriminately would be 
inefficient. The HHMA allows for rational resource management.1 The system can 
operate by default using fast and efficient heuristics and models at Level 0. The 
deliberate and costly reasoning of Level 2 is only activated when the monitoring of 
Level 1 indicates it is necessary. This mirrors how humans allocate their cognitive 
resources, resorting to deep thought only when faced with novel or difficult 
problems.37 

● Robust Error Detection and Correction: The HHMA moves beyond simple 
outcome-based error detection. Level 1 allows for the probabilistic detection of 
impending errors, even before they manifest in a negative outcome, by monitoring 
internal proxies like model uncertainty. When a potential error is flagged, Level 2 
can perform a causal diagnosis using its self-model to determine the likely cause 
of the failure (e.g., "sensor failure" vs. "inadequate model for the task") and apply 
a more targeted and effective correction.1 



 

4.2. Comparison with Alternative Architectures 

 

The HHMA positions itself as a synthesis that aims to capture the strengths of 
disparate paradigms while avoiding their main weaknesses. 

● Against Purely Symbolic Architectures (e.g., MIDCA): While symbolic 
architectures offer excellent transparency and explicit control, their reliance on 
logical representations makes them brittle in real-world environments, which are 
inherently noisy, ambiguous, and high-dimensional. The HHMA overcomes this 
brittleness by using its probabilistic Level 1 to interface with the complex world, 
translating the raw, noisy data from Level 0 into nuanced uncertainty signals that 
the symbolic Level 2 can then consume. 

● Against Purely Sub-symbolic Approaches (e.g., LLMs, Meta-RL): While 
sub-symbolic systems are exceptionally good at learning from complex data, their 
metacognition is opaque, implicit, and often poorly calibrated. They lack a 
mechanism for robust and deliberate self-examination. The HHMA addresses this 
issue by overlaying a symbolic controller (Level 2) that can explicitly inspect, 
diagnose, and regulate the underlying sub-symbolic system. The calibration loop, 
in particular, provides a mechanism to correct the metacognitive biases (like 
overconfidence) that are endemic in purely neural models. 

In essence, the HHMA proposes a "best of both worlds" solution. It integrates the 
ability of neural systems to learn rich representations from raw data with the ability of 
symbolic systems to reason robustly, transparently, and compositionally about those 
representations. 

 

4.3. Implications for Embodied AI and Assured Autonomy 

 

The implications of the HHMA are perhaps most profound in the domain of embodied 
AI, such as autonomous robotics, where failures can have physical consequences. 
Safety and reliability in these systems are not optional. Metacognition is the 
fundamental mechanism for achieving assured autonomy—the ability of a system to 
operate safely and predict its own performance, even in situations for which it was not 



explicitly trained.6 

Consider an autonomous robot navigating an outdoor environment.5 The HHMA would 
allow the robot to: 

1. Monitor Sensor Reliability: Level 0 processes sensor data (e.g., camera, LiDAR). 
Level 1 monitors the consistency and noise in these data streams. If it starts to 
rain, Level 1 would detect an increase in noise and uncertainty associated with the 
LiDAR data, generating a "low sensory confidence" signal. 

2. Diagnose the Context: Level 2 receives this low-confidence signal. It consults its 
self-model ("I have a LiDAR sensor that is affected by rain") and its other sensors 
("The humidity sensor is detecting precipitation"). Its reasoning engine 
concludes: "The likely cause of the LiDAR uncertainty is rain." 

3. Adapt Behavior: Based on this diagnosis, Level 2 initiates a control action. It 
might decide to slow the robot's speed, increase the safety distance, and, 
crucially, change how sensor data is weighted in its localization algorithm, giving 
less weight to the noisy LiDAR and more weight to camera or radar data. 

This process allows the robot to adapt gracefully to a change in environmental 
conditions, maintaining safe operation. The system knows that it doesn't know (i.e., 
that its LiDAR data is unreliable) and acts accordingly. This is a fundamental step 
beyond reactive systems and towards truly robust and assured autonomy. 

 

4.4. Open Challenges and Future Directions 

 

Despite its potential, the implementation of the HHMA is not without significant 
challenges, which also point to important directions for future research. 

● The Knowledge Acquisition Bottleneck: One of the biggest challenges lies in 
creating and maintaining the declarative self-model in Level 2. How does an agent 
acquire this knowledge about its own components and their limitations? Initially, it 
can be provided by human engineers, but for true autonomy, the system should 
be able to learn and refine this model through experience—a process of 
computational "self-discovery." 

● The Interface Problem: The effective translation between the different levels of 
the architecture is a crucial technical challenge. How are the continuous, 
probabilistic signals from Level 1 discretized and transformed into symbolic 
representations that the reasoning engine of Level 2 can use without losing 



critical information? Developing a robust interface "language" between the 
sub-symbolic and symbolic worlds is an active area of research. 

● The Computational Overhead: Adding explicit layers of metacognition inevitably 
comes with a computational cost. The reasoning at Level 2 is, by design, slower 
than the processing at Level 0 and 1.26 It is crucial to investigate the trade-off 
between the benefits of increased robustness and the cost of increased 
computational overhead. Future research should focus on optimizing the 
triggering mechanism to ensure that deliberate reasoning is only invoked when its 
benefit outweighs its cost. 

● Recursive Metacognition: The calibration loop in the HHMA is already a form of 
meta-metacognition. However, one can theoretically imagine adding more levels. 
A Level 3 could monitor the diagnostic process of Level 2, looking for biases in its 
reasoning. While this raises the specter of an infinite regress, exploring the 
theoretical implications and practical benefits of deeper metacognitive 
hierarchies (of two or three levels) is a fascinating avenue for research.49 

 

5. Conclusion 

 

The quest for an artificial intelligence that is not only powerful but also reliable, 
transparent, and adaptable has brought the research community to an inflection 
point. The capacity for metacognition—the self-monitoring and self-regulation of 
one's own cognitive processes—has emerged as a critical frontier. This paper has 
addressed the current fragmentation in the field, identifying a "Metacognitive Gap" 
between the clear theoretical models of psychology and the disparate and often 
ad-hoc computational implementations. To bridge this gap, a balanced path forward 
has been proposed. 

 

5.1. Summary of Contributions 

 

The central contribution of this work is the proposal of the Hybrid and Hierarchical 
Metacognitive Architecture (HHMA). This framework offers a structured synthesis that 
aims to unify the strengths of symbolic and sub-symbolic approaches, which have so 
far been largely developed in parallel. By outlining a multi-level architecture, the 



HHMA provides a concrete blueprint for building AI systems with robust metacognitive 
capabilities: 

● Level 1 (Probabilistic Monitor): Utilizes the strength of Bayesian models to 
handle uncertainty and generate fast, nuanced monitoring signals from complex 
data, functioning as a computational "System 1." 

● Level 2 (Symbolic Controller): Utilizes the strength of symbolic reasoning to 
perform explicit diagnostics and exert strategic, transparent control, functioning 
as a computational "System 2." 

The dynamics between these levels, particularly the innovative calibration loop, 
which allows the system to reflect on and improve its own self-assessment capability 
(a form of meta-metacognition), represents a significant advance over simple 
monitor-control cycles. It has been argued that this hybrid architecture directly 
addresses key AI challenges, including adaptability, explainability, resource 
management, and error correction, offering a promising path towards assured 
autonomy. 

 

5.2. Broader Scientific and Philosophical Implications 

 

The creation of an AI with robust metacognition has implications that extend far 
beyond software engineering, touching on fundamental questions about the nature of 
intelligence, collaboration, and responsibility. 

● Human-AI Collaboration: An AI that "knows what it doesn't know" is a 
fundamentally better collaborator. It can communicate its confidence levels, know 
when to defer to a human partner, and explain its decisions in a way that fosters 
trust and shared understanding.4 However, this same capability introduces new 
risks. As research shows, humans tend to be overconfident in their performance 
when using AI, and an AI that appears competent can exacerbate complacency 
and over-reliance, leading to an atrophy of human metacognitive skills.51 
Designing human-AI interaction to promote a symbiotic partnership, rather than a 
myopic dependency, will be a critical challenge. 

● Agency and Responsibility: This paper has deliberately avoided making claims 
about AI consciousness. However, it is philosophically significant that a system 
with the capacity for explicit self-reflection, a model of itself, and the ability for 
deliberate self-control begins to satisfy some of the conditions for agency and 
what has been termed "functional free will".56 If a system can predict the 



consequences of its actions, evaluate those consequences against its goals, and 
choose a course of action over another based on that evaluation, the question of 
responsibility becomes unavoidable. This does not imply that AI has moral 
responsibility in the human sense, but it underscores the urgency of incorporating 
ethical frameworks and "moral compasses" into the very design of these 
autonomous systems.56 As we give AI more freedom, the need to give it a moral 
education from the start becomes more pressing. 

● The Future of Intelligence: Finally, the exploration of computational 
metacognition suggests a reorientation in our quest for artificial general 
intelligence (AGI). Perhaps the path to a more general, human-like intelligence lies 
not just in scaling current models to ever-larger sizes, but in endowing them with 
an architecture that supports deep introspection. The ability to not just process 
the world, but to understand and improve its own process of doing so, may be the 
true hallmark of a higher intelligence. The development of robust metacognition 
may, in the end, be the step that transforms our machines from powerful 
computers into true reasoning partners. 
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