
A WeightedCA for Flood Modeling

Andre Vacha

22/12/2021

1 Introduction

In this project, we will propose a cellular automaton for flood simulation. We will first
outline the model, before implementing the model over a study area with fascinating char-
acteristics: the state of Kerala, India, which simultaneously receives an average of 2000m
of rainfall during the monsoon season while the majority of its terrain is at mean sea level.

2 Model: Weighted CA

The WeightedCA model extends the CA2D model (Guidolin et al., 2016) to simulate
flooding over surface terrain using a 2D CA and ‘weight-based’ transition rules. The model
is quasi-physical, solving simple shallow-water equations while using a weighting system to
speed up the simulation. The pseudocode for updating the CA is given below:

def update (g r id : np . array (N,N, 5))
g r id copy = gr id . copy ()
for i in range (N) :

for j in range (N) :
c e n t r a l c e l l = gr id copy [i , j]

f i nd downstream c e l l s r e l a t i v e to c e n t r a l c e l l s

compute t o t a l a v a i l a b l e s t o rage volume v to t
compute weight o f each c e l l us ing v to t
compute in t e r−c e l l u l a r volume us ing weights i c

update c e l l s t a t e s
c e n t r a l c e l l −= i c
for each downstream neighbor :

ne ighbor += weight [i]∗ i c

1

The terms are fairly esoteric, and are better explained by specifying the model (Cells
and Transition Rules) and a demonstration with simple examples (Basin and Dam-Basin
models) below.

Figure 1: Toy Model 1. Basin Model. A gently sloping, concave basin with predictable
flow from the edges to lowest point.

Figure 2: Toy Model 2. Dam-Basin Model. The Basin Model with a tall Dam constructed
through the center. Bars are made transparent and the y-scale is adjusted to focus on the
flow of water. In frame 15, water does not cross the dam.

2.1 Cells

The model takes a Digital Elevation Model, stored as a numpy array, as input. For an
(N,N) input, the preprocessing stage involves the addition of 4 layers to an expanded
representation of (N,N,5):

1. Layer 1: Ground Level.

This layer is the DEM itself, with no data values (e.g. -9999) masked out. A DEM
represents surface terrain of a landscape using a grid comprising cells, where each cell
has a raster size of, say, 30m x 30m. Data was downloaded using, in one-off excellence
for a .gov website, EarthExplorer and converted to a numpy array using the geotiff
module.

2

https://earthexplorer.usgs.gov/

Figure 3: Re-sampling a large DEM: the southern Western Ghats, India

For simulating very large catchments (>10,000, >10,000), the DEM could be re-
sampled using the resample_array() utility function to yield a smaller, more com-
putationally tractable grid size while retaining the overall topology. As seen in the
figure above, however, aggressive re-sampling creates sheer drops between adjacent
cells, which we almost never find in real-world data.

2. Layer 2: Water Columns.

Figure 4: A ‘border’ initialization for the Basin model

This layer records the water level of each cell, relative to Ground (DEM) Level. This
is the state we will update each time step in the CA. The layer can be initialized to dry
cells (i.e. all cells with a water level of 0), or preexisting water levels. Precipitation
can be thought of making minor additions to this layer each time step.

3. Layer 3: Slope Field.

This records the slope (degrees) of each cell. It measured by considering the Moore
neighborhood of each cell, measuring the change along the ‘row‘ and ‘column‘ di-
rections of the 3x3 window. This is data cached to help approximate Manning flow
while calculating state transition rules.

3

4. Layer 4: Directions.

Figure 5: Flow Directions for the Basin model.

This records the directions of flow for each cell, encoded as an integer between
[0, 494]. Water in a cell may flow to any of 8 neighboring cells, as long as they
are downstream. As such, to find the directions for each cell, we first find the down-
stream cells, and encode each of their positions in binary. For example, a cell with
no downstream neighbors would be stored as [00000000] = 0, while a cell with a
downstream neighbor in the North and West would be stored as [00001010] = 10.

Figure 6: Position codes for Flow Directions.

5. Layer 5: Previous Intercellular Volume.

The previous intercellular volumes for each cell are stored here. At the start of the
simulation, this is initialized to 0. This layer is needed to compute the intercellular
flow at time step ‘t+ ∆ t‘.

The concept of an ’Intercellular Volume’ will be explained in the next section on tran-
sition rules.

2.2 State Transition Rules

We are interested in updating the water height of a central cell dc at time t+∆t considering
the state of the central cell and its neighbors at time t, where ∆t is a simulation parameter.

4

We first consider the height differences between a central cell c and each of its neighbors i,

∆dc,i = dc − di ∀i ∈ {1 · · · 8}

d (m) is the water *height* at a given cell. The water height is the sum of a cell’s
elevation and its water column wc at time t. Since elevation is recalled from a DEM,
measured as meters from mean sea level, this can also be thought of as the water level
relative to mean sea level. As such, ∆dc,i measures the height difference between water
levels in the central cell c and its neighbour i.

∆Vc,i = Amax(∆dc,i, 0) ∀i ∈ {1 · · · 8}

A (m2) is the area of each cell. This is a constant, as each cell in the grid is a square
with length (l) equal to the resolution of the DEM. Typical raster sizes are (10x10) (m2)
or (30x30) (m2).

∆Vc,i (m
3) calculates the volume we need to add to cell i such that the water levels

between the central cell and the cell i are balanced. Implicating mass conservation, this is
the available storage volume for the cell i.

∆Vtot =
8∑

i=1

∆Vc,i

∆Vtot (m3) sums over all ∆Vc,i to yield the total available storage volume across all
neighbors. The largest contribution to this term will come from the largest ∆Vc,i. Since
area is constant, this coincides with the lowest downstream neighbor or, equivalently, the
neighbor with the largest height difference with the central cell. We will make use of this
fact in the weighting system, an algorithm for determining flow proportions to downstream
neighbors.

Consider a simple physical intuition: when water flows downstream, it chooses the
path of least resistance. This rules out water flowing upwards (as it loses energy in the
process), so an efficient path must be one of steepest descent. In continuous space, we have
a wide span of directions to choose for this path. In a CA, however, we have discretized all
possible paths into a finite set of (8) directions. To compensate for this loss of granularity,
we don’t consider a *single* path for the flow, but rather, a series of flow proportions
to downstream neighbors. These flow proportions are such that the steepest downstream
neighbor receives the largest fraction, while the remaining neighbors receive smaller and
smaller fractions in proportion to their lower and lower steepness. In the simplest case,
consider the following height differences across 8 neighbors ‘[0,10,0,5,0,5,0,0]‘. The flow
proportions are ‘[0,0.5,0,0.25,0,0.25,0,0]‘.

wi =
∆Vc,i

∆Vtot +∆Vmin
, wc =

∆Vmin

∆Vtot +∆Vmin

5

In this formulation, downstream neighbours may reach heights above the central cell,
which causes oscillations in the simulation (Guidolin et al., 2016). To minimize these, we
permit the central cell retain a fraction of the total volume, ∆Vmin, the minimum available
volume found in neighbours. Unlike the Guidolin et al. formulation, we also set a minimum
volume of (1e-4) and maximum volume (1e4) in the event that no downstream neighbor is
found. This was found to reduce oscillations in the simulation dramatically.

While the weighting system alone can serve as a simple, ”water balancing” transition
rule, it excludes physical terms that might improve the modeling of flood dynamics. For
example, there are flooding regimes where a small, local area will experience a large influx
of water and become completely flooded, before the water dissipates after a short interval
of time. To introduce these terms, we introduce a new quantity, total intercellular volume
Itot (m3). In contrast to total available storage volume, total intercellular volume is the
total outflow from the central cell over the timestep ∆t and must strictly be Itot < ∆Vtot,

It+∆t
tot = min(dcA,

IM
wM

,∆Vmin + Ittot)

Of the three terms, the first one is a simple limitation: the outflow cannot exceed the
total available volume in the cell (dcAc). The third term is an ’inertial’ volume: we consider
the transfer out of the cell in the previous iteration, and add the volume that would be
transferred out of the central cell. The second term represents the maximum possible
intercellular volume IM , which flows into the downstream neighbor with the largest weight
wM ,

IM = vMdcl∆t

Here, (vMdcl) (m
3/s) computes the maximum permissible volume change in a second.

l is the cell length (m), dc is the water height (m), and vM is the maximum permissible
velocity (m/s) at the current time step. ∆t (s) is the time step, which is a simulation
parameter.

vM = min(
√

2gdc,
1

n
d

2
3
c

√
∆dc,M

l
)

To calculate the maximum permissible velocity, we consider a maximum theoretical
velocity term

√
2dcg, when water is theoretically in free fall: all its stationary Gravitational

Potential Energy is converted to Kinetic Energy (mgh = 1/2mv2; 2gh = v2;
√
2gh = v).

The next term is Manning’s formula, an estimation for average velocity of a liquid flowing

in an open channel.

√
∆dc,M

l computes the gradient (-) between the central cell height,
while dc is the height of the water column in the central cell. n is Manning’s coefficient,
which is set to 0.02, the value often used for floodplain simulations over smooth earth.

Tying everything together, we can update water columns using the following equations:

6

dt+∆t
c = dtc −

It+∆t
tot

A

First for the central cell’s water column, we simply subtract out the total intercellular
volume divided by the cell area.

dt+∆t
i = dti −

wiI
t+∆t
tot

A
∀i ∈ {1 · · · 8}

Then, for the neighbors, we subtract out the flow proportion times the total intercellular
volume, divided by the cell area.

2.3 Benchmark Model: Flow-Accumulation Matrix

While we have good intuitions about how water flows in small cases (see Toy Examples,
above), we need another heuristic for how well the simulation will work in larger cases. To
do so, we estimate a flow accumulation matrix.

Unlike the CA, this simulation does not have a time component, and does not solve any
equations. Instead, we are using information from the Direction Layer to suppose where
water would end up. We do this by repeatedly asking a unit of water to flow down terrain,
and tally the cells it passes through:

de f make f low acc (gr id , l im i t = 10 , i t e r a t i o n s = 10000) :

l e t N be the number o f rows/columns in the g r id
I n i t i a l i z e f low accumulation matrix Fa = (N,N)

f o r i in range (i t e r a t i o n s) :
l e t g r id [i , j] be a randomly s e l e c t e d c u r r e n t c e l l in g r id

v i s i t the c e l l in Fa matrix Fa [i , j] += 1
i n i t i a l i z e v i s i t e d c e l l s to 1

whi l e v i s i t e d c e l l s < l im i t :
get the d i r e c t i o n vec to r o f the c e l l c [i , j , 2]
unpack the d i r e c t i o n vec to r to a l i s t o f d i r e c t i o n s
s e l e c t a random d i r e c t i o n from l i s t (dx , dy)

c u r r e n t c e l l = gr id [i + dx , j + dy] += 1
v i s i t the c e l l in Fa matrix Fa [i + dx , j + dy] += 1

return Fa

7

Recall that a direction code [0-494] stores up to 8 possible downstream directions. In
make_flow_acc, the next visit is chosen at random, making this simulation stochastic.

Figure 7: Penrose Accumulation
(Infinite Staircase).

Figure 8: Basin Accumulation. Arrows point
to the direction of steepest descent, a vector
sum of all downstream directions.

While the visualization of the flow accumulation matrix is seemingly equivalent to the
height map in simple examples, it is much more useful for complex terrains. Additionally,
it can be used to simulate local patterns of rainfall. For example, we simulate persistent
rainfall at the borders of the Beauford Watershed first before applying uniform rainfall,

Figure 9: CA vs Flow Accumulation for Beauford Watershed.

Notice how both the CA and the flow accumulation matrix trace the straight ridges
and suggest similar regions of high flooding risk, but deviate significantly in segments with
more complex geometry. The CA, for example, suggests that flooding will occur in the

8

Northwest quadrant, with flooding occurring the Southeast quadrant.

2.4 Metrics

To ground the discussion of metrics, we will refer to two toy models introduced earlier: the
Basin Model and the Dam-Basin Model.

1. Total Mass (m3).

This metric primarily checks that the total mass is conserved across iterations of a
simulation with no rainfall. When we simulate with rainfall, this metric proxies for
a cumulative precipitation record. The units are a misnomer, as we technically need
to rescale this by density (1000 kg/m3) to get the correct units (in kg).

2. Average Flow Rate (m3/s).

Figure 10: Total Mass and Average Flow Rate in Basin.

This metric averages the intercellular volumes across each cell each iteration of the
simulation. It answers the question: ”How fast is the water flowing at the current
iteration of the simulation?”. Realizing this metric is the main benefit of adding
physical terms to the model: along with inundation risk, we can also estimate the
risk of flash flooding.

A shortcoming of the CA approach is that this metric is prone to oscillations, as
small amounts of water pass back and forth between neighbors in the stable regime.
To limit these oscillations, we have set minimum and maximum volumes (v_min and
v_max) to 1e-4 and 1e4 respectively.

3. Fraction of Cells Flooded [0,1].

9

Figure 11: Fraction of cells flooded in Basin.

This metric measures the fraction of cells that are flooded according to a set of
thresholds (by default, this is [0.1m, 0.5m, 1.0m]). This allows us to estimate the
risk of flooding at different levels of severity.

4. Central Cell(s).

Figure 12: Fraction of cells flooded in Basin.

Records the total height of the water column at a cell/cells of interest across each it-
eration in the simulation. By default, this is the cell with position [5,5]. In simulating
with the study catchment, we will choose areas of importance (points with arterial
highways, high-density housing etc.). By calculating the difference between succes-
sive points, this can also be used to check that water is flowing below a theoretical
maximum of

√
2gh.

2.5 Rainfall Model

To simulate rainfall, we implement a ‘Poisson-Cascade Model’. Using an average monthly
rainfall (in mm) as input, we simulate 30 days of rainfall, then 12 hours from a sampled

10

day, and then 60 minutes from a sample hour. Each of these is Poisson-distributed as it
returns discrete rainfall values and we only need a single mean parameter to define it.

Figure 13: Poisson-Cascade Rainfall Model, for

This model is stochastic, and yields moderately different results for simulations initial-
ized with the same parameters. This model also assumes even rainfall over the Study Area,
as opposed to one that models rain clouds moving over time and affecting small locales.

2.6 Implementation

The WeightedCA model was implemented in Python primarily using numpy. Optimiza-
tions were won using the numba package’s JIT compiler for especially expensive rou-
tines. Simulation performance statistics were saved in the pref_resuls.txt file. A suite
of tests were implemented in Tests.ipynb, greatly benefiting from plotting utilities in
plotting_utils.py and functional programming, which allowed tests to be performed on
small, intuitively predictable cases. Animated test cases are stored in the media folder.

As a performance thumb rule, to simulate a 100x100 grid with 60*12 = 720 iterations
and a 60s timestep (a full rainy day), the model takes an average of about 140s to run.
While this is reasonably efficient, it is sub-optimal for large grids and necessitates grid
re-sampling, demonstrated in an earlier section.

11

3 Case Study: Kerala, India

Figure 14: Left: SRTM DEM data. Right: Study Area in Kerala, India

The Study Area (color, above) is a square quadrant of a DEM loaded from the SRTM
database with a 3-arc second resolution (90m x 90m per cell). This quadrant measures
72 km x 72km, cropped from the overall DEM size of 108 km x 108km to focus on inland
areas more prone to flooding.

Figure 15: DEM Resampling for Study Area

After resampling, each cell has a size of 720m x 720m. These large cells introduce a
new tradeoff: as we simulate larger areas, we lose out on possible targeted interventions.
The Hoover Dam, for instance, stretches only 380m or about half the length of a cell. As
such, a proposed dam just 1 cell wide would be a very large dam in real life.

12

https://www.maverickhelicopter.com/hoover-dam-facts.aspx

Figure 16: Topography of Study Area

The topography describes mountain ranges in the Northeast that rapidly dissipate to
a floodplain almost entirely at sea level. In combination with strong precipitation during
the monsoon, these features have created an abundance of still freshwater that has been a
boon for rice paddy cultivation, but also made the state prone to flooding in unpredictable
ways.

3.1 Simulation Results

We simulate a day of heavy rain (avg = 50mm) over 12 hours, with a time step of 60 seconds.
Rainfall is applied homogeneously over all cells in the grid. To estimate uncertainty over
simulation results, we repeat the experiment 5 times.

Figure 17: Flood Maps for Heavy Rain

13

In the figure above, the darkness of the dots corresponds to the extend of the flooding
in the cell. Cells without dots generally contain water, albeit in very minute quantities.

Comparing the plots, there is correspondence between the WeightedCA and Flow Ac-
cumulation matrix: over a very flat floodplain, ponds form over individual cells or small
clusters of cells, but large scale flooding patterns do not seem to occur. This might be
because the simulation time scale was too short to allow water to reach stable locations,

Figure 18

In a sample run, for example, we can see that the mean flow rate continues to rise. In
a stable regime where water has settled on average, we would see a much lower mean flow
rate oscillating about a long-term mean (Figure 8).

Figure 19: Fraction of Cells Flooded, 5 Runs

According to the figure above, at the end of the simulated day approximately 6% of

14

cells reach 0.1m of water, which can be thought of as a mild or negligible flood. About 2%
to 4% experience moderate flooding at 0.5m, while about 1% of cells experience significant
flooding of 1m or more.

In each threshold, the fraction of flooded cells increases monotonically (as there is
persistent rainfall over the course of the day), albeit at a reducing rate (as outlet or drainage
cells collect water). This suggests that there are outlet cells that have higher flooding risks
because of the local topography.

3.2 Dam Proposals

While the current study area is quite large, we demonstrate how two strategies for flood
mitigation could be implemented. The area these dams will try to protect is the city of
Kottayam, marked with a black rectangle below.

Figure 20: 2 Example Strategies for Flood Mitigation: Large Dam and Small Dams

In the first strategy, an unrealistically large dam embanks the right side of the city. In
the second, 6 dams, each occupying one cell, are placed spaced apart towards the North-
East of the city. For each strategy, the simulation was repeated for 50 trials (a runtime of
about 3 hours in total) with average rainfall of about 50mm as before.

15

Figure 21: Comparison of Strategies: Expected Flooded Cells

Averaged over all runs, there is seemingly no difference between the strategies. In both
cases, the same cells are susceptible to flooding. In the following plot, the minor differences
between the strategies can be analyzed in another way,

Figure 22: Comparison of Strategies: Fraction of Flooded Cells.

Over 12 hours, the fraction of cells flooded across each threshold exhibit the same
dynamics. Interpreted another way, the confidence bands of both strategies envelop each
other. If we consider the final iteration of all simulations, we can see if there is in fact a
difference between these strategies,

16

Figure 23: Comparison of Strategies: Fraction Flooded at End of Day

On average, the small dam strategy narrowly reduces flood risk when compared to
large dams. However, the difference between these is statistically insignificant, with no
p-value falling below 0.11. These flooding fractions are also comparable to the fractions
seen without any interventions (Figure 18), and are not very effective solutions. As made
apparent by the histograms, the uncertainty over these expected values are nearly identical
between strategies, perhaps as an artefact of i.i.d. sampling from a Poisson distribution.

4 Conclusion

Over very flat terrain and with a rainfall model that distributes rainfall evenly over the
catchment, the WeightedCA provides detailed information about which cells are at risk
of flooding, and the risk of flooding at the simulation scale. However, in simulating over
a large study area and cell size, we lack the precision to describe possible intervention
strategies. In a following study, we might simulate smaller catchments with smaller cell
sizes and realize better results. Additionally, an improved rainfall model that includes
moving clouds (and subsequent local rainfall patterns) might improve the model.

17

5 References

1. Michele Guidolin et al. (2016). A cellular automata 2D inundation model for rapid
flood analysis.

2. Coppola, E., et al. (2007). Cellular automata algorithms for drainage network ex-
traction and rainfall data assimilation.

3. Cirbus, J., Podhoranyi, M. (2013). Cellular Automata for the Flow Simulations on
the Earth Surface, Optimization Computation Process

The paper suggests that it uses the D8 model for flow direction (pick the Direction
of the 8 neighbors with the lowest elevation). However, when I replicated Figure 3
in the paper, I found that it was instead doing a ”pick the sum of the directions of
all lowest neighbors” technique, which I haven’t seen in similar papers.

There was a miscalculation in the slope field. I corrected this and tested my calcula-
tions against a DEM-manipulation package, and got exactly the same results.

Nonetheless, I have so much concern about the update rules and how they are defined.
Each iteration, and each cell, the water in the cell changes by (water in from neighbors
[to whom the central cell is the D8 neighbor]) - (water out to D8 neighbor). There
is an idea about transfers happening in ’active cells’ in the control flow diagram, but
there is no mention of what makes a cell active in the rest of the paper.

4. Barnes, Richard. 2016. RichDEM: Terrain Analysis Software

18

http://github.com/r-barnes/richdem

	Introduction
	Model: Weighted CA
	Cells
	State Transition Rules
	Benchmark Model: Flow-Accumulation Matrix
	Metrics
	Rainfall Model
	Implementation

	Case Study: Kerala, India
	Simulation Results
	Dam Proposals

	Conclusion
	References

