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Abstract

Posidonia oceanica is a protected endemic seagrass of Mediterranean sea that fos-
ters biodiversity, stores carbon, releases oxygen, and provides habitat to numerous
sea organisms. Leveraging augmented research, we collected a comprehensive
dataset of 174 features compiled from diverse data sources. Through machine
learning analysis, we discovered the existence of a robust correlation between the
exact location of P. oceanica and water biogeochemical properties. The model’s
feature importance, showed that carbon-related variables as net biomass produc-
tion and downward surface mass flux of carbon dioxide have their values altered
in the areas with P. oceanica, which in turn can be used for indirect location of P.
oceanica meadows. The study provides the evidence of the plant’s ability to exert
a global impact on the environment and underscores the crucial role of this plant
in sea ecosystems, emphasizing the need for its conservation and management.

Keywords: Machine Learning, Biogeochemical variables, Posidonia oceanica, Marine
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1 Introduction

Posidonia oceanica is one of the most dominant seagrass species in the Mediterranean

Sea Ruiz et al (2015). It provides essential habitats for diverse marine animals including

fish, octopus, squid, and other animals Otero (2016). Only along the coast of Almeria
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in Spain, there have been almost 1000 species of plants and animals identified in P.

oceanica meadows; similarly, on the Murcian coast, over 150 species of mollusks have

been described, and the leaves of P. oceanica have been associated with the presence of

more than 400 different species of seaweed and several thousand animal species. This

remarkable abundance of biodiversity makes this underwater habitat a truly unique

and ecologically rich. Furthermore, the P. oceanica acts as a natural filter, enhancing

water clarity and nutrient cycling, while also mitigating the impacts of coastal erosion

by stabilizing sediment Campagne et al (2015).

P. oceanica, with its wide distribution and well-studied biology and ecology, has

been used as an indicator organism Lopez y Royo et al (2011) for assessing environ-

mental quality. Its response to anthropogenic disturbances has allowed researchers

to establish correlations between certain structural and functional variables and the

quality of the surrounding waters. However, gaining a comprehensive understanding

of the complex relationship between P. oceanica and its surrounding aquatic environ-

ment continues to pose a challenge. There are several crucial biological, chemical, and

physical variables that need to be taken into account when predicting the presence

and well-being of P. oceanica meadows Romero et al (2007). These variables, on one

hand can offer insights into the environmental conditions and nutrient availability that

directly impact the growth and survival of this seagrass species Cocozza et al (2011),

and on other hand, they can be used as indicators for the presence and health of the P.

oceanica meadows Lopez y Royo et al (2011). Identification of these variables aims to

gain a deeper understanding of the biogeochemical conditions and their interrelations

that contribute to the creation of a favorable environment for the thriving of P. ocean-

ica to ensure the sustainability of the seagrass ecosystem a-priori, without the need of

collecting field data that requires significant resources and expenses Effrosynidis et al

(2019).
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In this sense, Romero et al (1994) discusses the accumulation of carbon, nitrogen,

and phosphorus in the below ground parts of P. oceanica, including roots, leaf bases,

rhizomes, and organic matter in the sediment. They highlight its role as a significant

biogeochemical sink in the Mediterranean sea. Also, a study reported by Champenois

and Borges (2021) estimates the gross primary production, community respiration,

and net community production in a P. oceanica seagrass meadow, computed from O2

measurements. They concluded that the meadow was net autotrophic, in agreement

with oxygen oversaturation (104% at annual scale) and also acts as a CO2 sink.

There are several works studying the effects of seagrasses on biochemical variables

for specific locations; however, some authors use environmental data to feed Machine

Learning (ML) models aiming to create Species Distribution Models or Habitat Suit-

ability Models. Bertelli et al (2022) reviewed the current knowledge on methodological

approaches used to model and map habitat suitability for coastal ecosystems. They

collated 75 publications, of which 35 included seagrasses, finding that the most com-

monly used variables for predicting seagrasses were bathymetry (74%), salinity (57%),

light availability (51%), and temperature (51%). Also, by merging datasets about sea-

grass presence and other external environmental variables, Effrosynidis et al (2018)

created a dataset aiming to determine the most appropriate variables affecting the

distribution of seagrasses. Their experiments yield an accuracy up to 93% in detecting

seagrass presence and from their variable, they concluded that Cymodocea and Posi-

donia favor the low chlorophyll levels, followed by distance-to-coast, and bathymetry

data.

This study aims to demonstrate the influence of seagrass on global water conditions,

correlating biological, physical, and chemical variables with the precise positioning of

P. oceanica meadows. By utilizing an augmented research approach that facilitates the

re-purposing, adapting, and reusing of multiple datasets, we created a labeled dataset
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with more than 6000 locations, pinpointing the existence or absence of P. ocean-

ica. This dataset combines 12 biogeochemical variables such as oxygen, carbon flux

and pressure, biomass production, phosphate, ammonium, and nitrate, with physical

variables depth, water temperature, salinity, and transparency. The monthly average

values of these variables were collected over a period of one year from different open

sources, including historical water data, oceanographic data, and satellite imagery,

resulting in a dataset with 174 parameters.

The dataset parameters were used as features to train ML models, aiming to iden-

tify the exact location of P. oceanica meadows. However, due to strong correlations

among variables and to enhance computational efficiency, dimensionality reduction

techniques were applied to eliminate the most highly correlated features. It was

observed that a removal threshold of 0.8 allowed the classifiers to maintain the same

level of accuracy and precision in locating the meadows. This value was then used to

investigate which features were most important in the classification process.

The predictive capacity of the model enables a thorough investigation of the impact

of P. oceanica on biochemical concentrations in water. This analysis provides valu-

able insights into the presence of P. oceanica and contributes to the development of

evidence-based conservation strategies for the Mediterranean marine ecosystem.

2 Results

Our objective is twofold: first, to establish a correlation between the geographic loca-

tions of P. oceanica and the biogeochemical and physical variables of seawater; and

second, investigate, through statistical analyzes inherent to ML models and by inspect-

ing the correlations among biogeochemical variables, unveiling which of them are

affected by the existence of P. oceanica.
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2.1 Key Biogeochemical Variables

First, we focus on the exploration of predictive models using only biogeochem-

ical variables extracted from the Mediterranean Sea Biogeochemical Reanalysis

(MSBR) Cossarini et al (2021). The dataset contains the monthly average values of

all 12 variables available in the MSBR. Data was collected for one year, ranging from

July 2020 to June 2021, as this was the most recent data available in the MSBR. For

further information on how the dataset was created, refer to Section 4.1.3.

Throughout this text we use the notation “variable” when referring to biochemi-

cal compounds, e.g. oxygen (O2), phosphate (PO4), net primary production of biomass

(nppv), or physical variables, such as salinity (so), temperature (thetao), etc. For a

complete list of variables, see Table 3 and Table 4. In the same way, we use the term

“feature” when we make reference to the values of a variable in a given month, for

example, the values of oxygen in the month of January 2021 is represented by the

feature [O2 (Jan.2021)].

Figure 1.a shows the correlation among the biogeochemical features, where the first

12 rows/columns refer to the O2 values ranging from July 2020 to June 2021, the next

groups of 12 correspond to the other biogeochemical variables in the dataset (Table 3).

As can be seen, there exist many positive correlations values (dark red) and negative

correlations (dark blue), meaning that they are redundant, irrelevant, or noisy. For

example, the variables dissic and talk, for all months are highly correlated, as they

appear as a red square in the upper-left corner.

As many features exhibit a strong correlation and thus removing them can improve

the dataset quality Ladha and Deepa (2011), we have conducted an investigation

into dimensionality reduction. This involves filtering out the correlated features and

retaining only those with the most significant impact on the classification process.

Initially, we analyzed the correlations among all features using the Pearson correlation
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Fig. 1 Machine learning models performance and dimensionality reduction. a, Heat map
showing the features correlations. b, Classification accuracy on reducing the correlated features. c,
Classifiers accuracy on features with correlation <= 0.8. d, Hierarchical clustering dendrogram.
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coefficient Benesty et al (2008); next, we applied dimensionality reduction to improve

interpretability and computational efficiency.

We applied the methodology detailed in Section 4.3.2 to assess the classifiers

accuracy upon removing the correlated variables. As depicted in Figure 1.b, certain

classifiers experienced a noticeable decrease in accuracy when the feature correlation

removal threshold is lower than 0.8. That is, significant features were pruned, leading

us to opt for a reduction threshold of 0.8.

Figure 1.c highlights the accuracy for all classifiers, considering the correlation

between the variables ≤ 0.8. As can be seen, the best results were achieved by the

RF classifier, with an average prediction accuracy of 78.46%, followed by DT with

78.16%, AdaBoost with 76.43%, and K-Nearest Neighbors (KNN) with 76.33%; the

other classifiers demonstrated an accuracy lower then 76%.

The selection criteria for correlation reduction of 0.8 pruned the dataset to 20

features. The dendrogram shown in Figure 1.d represents a hierarchical tree with the

relationships among the features. In the bottom, all features are listed as leaf nodes,

and going up in the y axis, branches connect these nodes based on their correlation,

generating clusters of correlated features. The red horizontal line represents the chosen

threshold of 0.8, and bellow this line, it is possible to see, in different colors, the

20 remained features and their correlations, enumerated as c1 to c20. For example,

the gray cluster c7 corresponds to the red square in the upper corner of Figure 1.a,

representing all features of the variables nppv, dissic, and talk. In this case, the

feature that represents this cluster is O2 (Feb.2021), highlighted in the dendrogram

with an asterisk next to it. Table 1 presents the features that represent each cluster

and their clustered features.

Despite achieving an accuracy rate of nearly 80%, upon analyzing the model’s

predicted values, we identified a problem known as the “pixelation”. This issue arises

due to the spatial resolution of the biogeochemical variables in the dataset, which is
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Table 1 Correlated features.

cluster Feature Clustered features

c1 chl (Dec.2020)
chl (Jan.2021)
nppv (Dec.2020, Jan.2021)
phyc (Dec.2020, Jan.2021)

c2 nppv (Jul.2020)
chl (Jul.2020)
nppv (Nov.2020, Sep.2020)
phyc (Nov.2020, Jul.2020, Sep.2020)

c3 nppv (Feb.2021)
chl (Oct.2020)
nppv (Oct.2020)
phyc (Oct.2020, Feb.2021)

c4 nppv (Mar.2021)
chl (Ago.2020, Apr.2021, May.2021, Feb.2021)
nppv (Ago.2020, Apr.2021, May.2021)
phyc (Ago.2020, Mar.2021, Apr.2021, May.2021)

c5 O2 (Dec.2020)
chl (Jun.2021)
nppv (Jun.2021)
phyc (Jun.2021)

c6 O2 (Ago.2020)
chl (Nov.2020, Mar.2021)
O2 (Jun.2021, May.2021, Apr.2021)
pH (Nov.2020, May.2021, Apr.2021)

c7 O2 (Feb.2021)

dissic (all months)
NH4 (Jan.2021)
O2 (Mar.2021)
pH (Dec.2020, Jan.2021, Feb. 2021, Mar.2021, )
talk (all months)

c8 fpCO2 (Sep.2020)
fpCO2 (Jun.2021, Ago.2020)
spCO2 (May.2021)

c9 pH (Jul.2020)
spCO2 (Dec.2020)
NH4 (Jul.2020)

c10 O2 (Oct.2020)
fpCO2 (Oct.2020)
NH4 (Oct.2020)
O2 (Nov.2020)

c11 O2 (Jul.2020)

NH4 (Nov.2020, Feb.2021, Mar.2021, Apr.2021, May.2021,
Ago.2020)
NO3 (all months except Jun.2021)
PO4 (Nov.2020, Feb.2021, Mar.2021, Apr.2021, May.2021)

c12 O2 (Sep.2020)
fpCO2 (May.2021)NH4 (Sep.2020, Jun.2021)
NO3 (Jun.2021)
pH (Ago.2020, Sep.2020, Oct.2020, Jun.2021)

c13 fpCO2 (Feb.2021) fpCO2 (Mar.2021, Apr.2021)
c14 PO4 (Jun.2021) PO4 (Jan.2021)

c15 O2 (Jan.2021)
NH4 (Ago.2020, Dec.2020)
PO4 (Jul.2020, Sep.2020, Oct.2020, Dec.2020)

c16 fpCO2 (Nov.2020) spCO2 (Jan.2021)
c17 fpCO2 (Jul.2020) spCO2 (Feb.2021, Mar.2021, Apr.2021)
c18 spCO2 (Jul.2020) spCO2 (Ago.2020, Sep.2020, Jun.2021)
c19 spCO2 (Nov.2020) spCO2 (Oct.2020)
c20 fpCO2 (Dec.2020) fpCO2 (Jan.2021)

1/24◦ (approximately 4 km). Consequently, all data points within the “pixel” have the

same value. As a result, the model assigns the same label to all points within a pixel.
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To address this issue, we aggregated additional variables, with different resolutions,

as described in the next section.

2.2 Detecting P. oceanica with larger set of indirect indicators

Although the model reports an average accuracy near 80% using only biogeochemical

variables, a limitation was noticed regarding the spatial resolution. To alleviate this

issue, we repeated the same steps described in Section 2.1, but expanding the dataset

with additional variables pointed out by Bertelli et al (2022) as important to iden-

tify the locations of P. oceanica, which are depth, water temperature, salinity, and

transparency.

The variables salinity and temperature were gathered from the Global Ocean Anal-

ysis and Forecast (GOAF) Lellouche et al (2019) also considering monthly average

values for an entire year. The depth was collected from the European Marine Observa-

tion and Data Network (EMODnet) Digital Bathymetry and the water transparency

was gathered from the Joint Research Centre (JRC) data. Further information on the

expanded dataset is presented in Section 4.1.4.

After expanding the dataset, we performed the same dimensionality reduction tests

and arrived at the same correlation cutoff of 0.8. It resulted in a set of 27 features,

appending to the previous dataset the depth, the water transparency (transp), salinity

(so) of February, March, and April, and water temperature (thetao) of January, June,

and October.

We repeated the same accuracy test presented in the previous section on the

expanded dataset. Figure 2.a shows a boxplot with the accuracy of all classifiers when

trained with these features. The RF model stands out with an average accuracy of

90.45%, indicating its proficiency in discerning and classifying the P. oceanica loca-

tions. Following closely is the KNN with an accuracy of 90.21%. DT model exhibits

an accuracy of 89.09%, while the AdaBoost achieves an accuracy of 88.0%.
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Fig. 2 Machine learning models performance evaluation on biogeochemical, depth,
water temperature, salinity, and transparency, considering variables correlation ≤ 0.8.
a, Classifiers accuracy. b, Confusion Matrix. c, Receiver Operating Characteristic (ROC) curve.

The confusion matrix provides a detailed breakdown of the model’s performance

by presenting the number of true positive (TP), true negative (TN), false positive

(FP), and false negative (FN) predictions. Figure 2.b shows the confusion matrix; the

top-left cell (1,412) corresponds to the number of true negatives, indicating instances

correctly classified as Non Posidonia. The top-right cell (125) represents false posi-

tives, signifying instances incorrectly predicted as Posidonia when they were actually

Non Posidonia. The bottom-left cell (118) corresponds to false negatives, indicating

instances misclassified as Non Posidonia when they were actually Posidonia. Lastly,

the bottom-right cell (1,279) represents true positives, denoting instances correctly

classified as Non Posidonia.

As can be seen in Figure 2.c, the Receiver Operating Characteristic (ROC) curve

is plotted closely to the top-left corner, indicating a combination of high sensitivity

and low false positive rate. The steepness of the curve implies a rapid transition

between sensitivity and specificity, allowing for an effective trade-off in classification

thresholds. Additionally, its performance suggests suitability for tasks where precision
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Table 2 Random Forest classification report using
biogeochemical, bathymetry, water temperature, salinity, and
transparency variables.

Precision Recall F1-score Support

Non Posidonia 0.9236 0.9206 0.9221 1537
Posidonia 0.9183 0.9162 0.9146 1397
Accuracy - - 0.9185 2934
macro avg. 0.9183 0.9184 0.9184 2934
Weighted avg. 0.9186 0.9185 0.9185 2934

in positive predictions and minimizing misclassifications are paramount. It presents

an Area Under the Curve (AUC) of 0.96, reinforcing the potential of the model for

reliable real-world applications.

Table 2 presents the classification report of RF model. The precision values for Non

Posidonia (0.9236) and Posidonia (0.9183) indicate the accuracy of the model in

correctly identifying instances of each class. The recall values, measuring the model’s

ability to capture all relevant instances, are 0.9206 for Non Posidonia and 0.9162

for Posidonia. The F1-scores, which balance precision and recall, are 0.9221 for Non

Posidonia and 0.9146 for Posidonia. The overall accuracy of 0.9185 signifies the pro-

portion of correctly classified instances. The macro average, considering unweighted

class contributions, is 0.9183, and the weighted average, accounting for class imbal-

ances, is 0.9186. These metrics collectively demonstrate the performance of the model

in delineating between Posidonia and Non Posidonia classes, demonstrating that the

addition of new variables increased the prediction metrics.

2.3 Visualizing the Predicted Locations

The Figure 3.a shows the data points in L’Ametlla de Mar, a municipality within the

region of Baix Ebre, situated in the south of Catalonia. The green areas represent

the P. oceanica meadows; the green points inside these areas are the selected ran-

dom points for Posidonia locations, while red points represent Non Posidonia. Gray
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shading in Figure 3.a, Figure 3.b, and Figure 3.c corresponds to chlorophyll mass con-

centration data in sea water [chl], and it was highlighted in the images to facilitate

understanding of the pixel problem.

Figure 3.b enlarges the predictions in L’Ametlla de Mar when using only the bio-

geochemical variables. It is possible to see that all predictions inside a “pixel” (different

shadows of gray) have the same value as Posidonia, in green or Non Posidonia, in

red. Figure 3.c shows the predictions for the same area, but using biogeochemical,

bathymetry, water temperature, salinity, and transparency. It can be seen the model

improvement, as now it has only a few misclassified points, i.e., red points inside of

the green area or green points outside.

Finally, a general map plots all predicted points for the test dataset. From

Figure 3.d to Figure 3.j, some areas with a large number of P. oceanica were enlarged

to allow viewing the predictions. The model presents excellent accuracy and precision

in its predictions, making it possible to understand the affinity of the variables used

in the prediction process with the P. oceanica.

2.4 Impact of P. oceanica on Sea Water

This section presents an investigation into the importance of features that drive the

model’s predictive ability, allowing us to understand the influence of P. oceanica on the

subtle changes in biogeochemical determinants. Features importance are calculated as

the mean and standard deviation of the impurity decay accumulation within each tree

of the Random Forest classifier.

Considering only the biogeochemical variables, oxygen (O2) was the first, with an

importance of 0.367, calculated by summing the importances of O2 for the months

of July, August, September, December of 2020, and January and February 2021. The

second most important was the flux of carbon dioxide (fpCO2), with an importance

of 0.270, where the months of July, September, November, and December 2020 and
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Fig. 3 Map of studied area, highlighting predicted values. a, Generated data points near
L’Ametlla de Mar, Catalonia. b, Pixel problem on predictions with biogeochemical variables. c, Pre-
dictions using biogeochemical, bathymetry, water temperature, salinity, and transparency variables.
d, Zoom in on the P. oceanica grasslands of the city of Denia, Valencian community. e, L’Ametlla de
Mar. f, Vilanova i la Geltrú, Catalonia. g, Alcudia Bay, north coast of Mallorca island. h, Almerimar,
Andalucia. i, La Manga, Murcia. j, Colonia de San Jordi, southern part of Mallorca, Balearic Islands.

February 2021 were used to calculate it. The net primary production of biomass (nppv)

of July 2020, February and March 2021 was the third more important feature (0.134).

Phosphate (PO4) of June 2020 with 0.077 was the fourth more important, followed

by the surface partial pressure of carbon dioxide in sea water (spCO2) of July and

November 2020 (0.072). The pH, and mass concentration of chlorophyll (chl) appear
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with a lower relative importance. Figure 4.a shows the importance when using only

biogeochemical variables; the blue bars are the feature importance of the forest, along

with their inter-trees variability represented by the error bars.

In the expanded dataset, depth had the highest importance, with 0.446, O2 appears

as the second most important variable (0.133), followed by salinity (so) and fpCO2,

with 0.116 and 0.097, respectively. The nppv had an importance of 0.057, followed by

sea water potential temperature (thetao) with 0.051. Phosphate, water transparency

(transp), chl, and spCO2 obtained a relative importance less than 0.05. The Figure 4.b

shows the importance, where biogeochemical data are plotted in blue and the other

variables in orange.

For a better understanding of how these features represent the classes (Posidonia

and Non Posidonia), the Figure 4.c plots matrix with the pairwise relationships of

the seven more important features, depth, so of March 2021, O2 of October 2020,

PO4 of June 2021, fpCO2 of September 2020, transp, and nppv of February 2021. The

secondary diagonal displays the histogram and the Kernel Density Estimation (KDE),

showing the distribution of observations of these variables. The upper and lower (off-

diagonal) triangles show the Bivariate KDE, employing contours to depict the density

of points in the two-dimensional space.

The depth is the only variable that visually presents clusters for the predicted

classes. Despite the absence of clear separations between each pair of variables, the

model, with its ability to consider multiple variables simultaneously was able to dis-

cern the intricate relationships. It highlights the versatility of Random Forests in

capturing nuanced patterns, even when conventional grouping suggestions are elusive.

The impossibility of perceiving isolated clusters for other features highlights the fact

that individually they are insufficient for distinguishing meadow locations, but when

analyzed together, they are effective in predicting the locations of P. oceanica.
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Fig. 4 Random Forest feature importance. a, Using only biogeochemical data. b, Using bio-
geochemical, depth, water salinity, temperature, and transparency. c, KDE pairwise relationships;
green refers to Posidonia data, while red indicates Non Posidonia.

3 Discussion

Our analysis has identified the most crucial biogeochemical variables associated with

P. oceanica, allowing to determine its location with an accuracy and precision of almost

80%. However, we recognized that the performance was constrained by the coarse

resolution of the data. To address this limitation, we incorporated additional variables,

measured on a different scale and commonly used in the literature for predicting

this seagrass (depth, water salinity, temperature, and transparency). As a result, we

achieved an accuracy and precision exceeding 90%. In this section, we delve into a

discussion of these variables to demonstrate their causal or consequential relationship

with P. oceanica based on existing literature.
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First, let’s consider non-biochemical variables that influence the presence of sea-

grass; it includes physical variables that regulate its physiological activity, natural

phenomena, and anthropogenic pressures Telesca et al (2015). Starting with depth,

the lower limit of P. oceanica meadows typically ranges from 25 to 40 meters, and

can be even deeper in areas with exceptionally clear waters, such as those found in

the Balearic Islands Leriche et al (2004). The upper limit of the P. oceanica meadows

is determined by hydrodynamics, specifically the wave regime. Wave action can dam-

age the plants and disturb the seabed, making it difficult for the plants to survive. In

meadows located in sheltered coves where wave action is minimal, the plants can grow

to the surface, as observed in the northern region of Menorca. However, as a general

rule, the upper limit is usually found at a depth of 3 to 5 meters, where the wave forces

are not strong enough to dislodge the plants from the seabed. The majority of mead-

ows are typically situated at depths ranging from 5 to 20 meters Ruiz et al (2015),

which is consistent with the depth data histogram presented in Figure 4.c. The adja-

cent histogram in the figure, along the secondary diagonal, illustrates salinity, with

the recorded values aligning with Telesca et al (2015), who reported that P. oceanica

is a stenohaline species, thriving within a salinity range of 36.5 to 39.5 ppt.

To achieve an optimal development, P. oceanica requires a favorable environment

with transparent waters. The level of water transparency directly impacts the plant’s

ability to harness the sun’s rays for energy through photosynthesis. Therefore, light

plays a crucial role in regulating the presence of P. oceanica. Upon observing the

transparency histogram in Figure 4.c, it is evident that areas with P. oceanica have

lower values (between 50 and 70), indicating higher transparency Martin et al (2023),

as it is based on the diffuse attenuation coefficient Kd490.

When considering the biogeochemical variables, it is important to understand that

the functioning of a P. oceanica meadow relies on photosynthesis taking place in the

chloroplasts of the leaves. Here, chlorophyll captures light and converts it into chemical
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energy Ruiz-Fernández et al (2012). This energy, together with nutrients (nitrogen and

phosphorus) from water and sediments, forms organic matter, sustaining the primary

production of the ecosystem. Higher levels of PO4 are present in both the water column

and sediment pore water at night on a daily basis, particularly in warm seasons, due

to increased decomposition and sediment release under low-oxygen conditions. These

findings are depicted in the PO4 histogram in Figure 4.c. It is important to note that

nitrogen-containing variables (NO3 and NH4) did not appear as important features,

that is explained because they were filtered out during the dimensionality reduction

due to their high correlation with phosphate Touchette and Burkholder (2000), as can

be seen in the clusters c11, c14, and c15 in the Figure 1.d.

P. oceanica is highly productive compared to other seagrass systems. The meadows

generate between 4 and 20 liters of oxygen per square meter per day, constituting one of

the most important sources of oxygenation in the Mediterranean Duarte and Chiscano

(1999). The oxygen histogram (Figure 4.c) shows that the largest number of points

sampled with P. oceanica present a higher value, in relation to the points without this

seagrass, that is, on a large scale it is possible to perceive the effect of P. oceanica

on generating oxygen in the sea. Part of this oxygen is released into the Earth’s

atmosphere during periods of maximum productivity capturing carbon dioxide (CO2).

Seagrass meadows are mainly autotrophic, their productivity exceeds their carbon

needs, demonstrating a high capacity to capture CO2, representing 24.3% of global

marine carbon sequestration, they are also referred to as blue carbon habitats Duarte

et al (2013); Macreadie et al (2019).

As can be seen in Figure 1.d, there is a strong correlation between surface downward

mass flux of carbon dioxide (fpCO2) and surface partial pressure of carbon dioxide

(spCO2), which are grouped into seven clusters (c8, c13, c16, c17, c18, c19, c20),

as the exchange of CO2 between the ocean and the atmosphere is controlled by the
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air–sea difference in partial pressure of CO2 at the surface and of the efficiency of the

transfer processes Rutgersson et al (2008).

Sea water alkalinity (talk) and dissolved inorganic carbon (dissic) are two param-

eters in ocean chemistry that are closely related to each other. The process occurs

when CO2 from the atmosphere dissolves in seawater, leading to a series of chemical

reactions that result in the formation of carbonic acid (H2CO3). This weak acid dis-

sociates into bicarbonate (HCO−
3 ) and carbonate ions (CO2−

3 ), both of which release

hydrogen ions (H+) that lower the pH of seawater Cox et al (2015). This correlation

is clear in the cluster c7, on Figure 1.d, which groups all talk and dissic features.

Biomass production (nppv) fluctuates seasonally in response to changes in light

and temperature. Leaf growth reaches its peak during spring and summer when there

is ample light and heat, but slows down in winter. Seagrasses store carbon from

summer photosynthesis as starch in the rhizome, utilizing it in autumn and winter

when nutrient availability is higher Ruiz-Fernández et al (2012). During the onset

of the new growing season in autumn, elevated cultivation temperatures have been

observed to enhance photosynthetic rates Pirc (1986), explaining the histogram of

nppv (Figure 4.c), where the production of biomass, is higher in areas with P. ocean-

ica. Biomass, phytoplankton, and chlorophyll are closely correlated in seawater due to

the fundamental role of phytoplankton in chlorophyll production and their contribu-

tion to overall biomass Gobert et al (2002); these correlations are clear in the clusters

c1, c2, c3, c4, and c5, shown in Figure 1.d.

This section showed that our machine learning statistical analyzes are aligned with

current literature, reinforcing that the correlations identified between biogeochemical

variables are linked to the presence of Posidonia oceanica.

18



4 Methods

This section describes the materials and methods used to obtain the results presented

in this article. First, we present the process of creating the dataset, then the tools and

methods used in cleaning and processing the data and, finally, the development and

evaluation metrics of the model are detailed.

4.1 Dataset Creation

For creating the dataset, we have first researched information where the P. oceanica

is located. Then, we algorithmically generated random points in and around these

locations, pinpointing where there is and there is not P. oceanica. Next, we gathered

biochemical and physical data for each generated point, discarding the points where

there was no data availability.

4.1.1 Locations

For mapping the locations of P. oceanica meadows, we have used data from the five

Spanish autonomous communities which are bathed by the Mediterranean Sea, namely

Catalonia, Valencia, Murcia, Andalusia, and Balearic Islands.

The coast of the Catalan Community extends in a general NE-SW direction for 699

km according to the National Institute of Statistics, between the parallels 42o 51.83’

and 40o 31.46’ N. The climate is typically Mediterranean, with an average annual air

temperature of 17oC, warm summers and mild winters 23oC and 12oC on average,

respectively. The precipitation is relatively low. The temperature of marine surface

waters ranges, in open waters, between 12-13oC in winter and 22-23oC (North end

of the coast) and 24-25oC (Southern end) at the end of summer. These values can

be exceeded in shallow semi-confined waters, such as the Alfacs bay (Delta of Ebro),

where minimum temperatures of 7oC and maximum temperatures of 30oC have been

observed.
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P. oceanica meadows are of two types, according to coastal morphology. On the

one hand, on sandy and rectilinear coasts, meadows appear as longitudinal, parallel

formations at a certain distance from the coast (from hundreds of meters to more than

a mile). The deep limit is marked, in most cases, by the penetration of light. This

deep limit ranges between 17 and 20 meters, sporadically up to 25. The Department of

Climate Action, Food and Rural of Catalonia provides data containing the delimitation

of the grasslands or meadows of marine phanerogams1 known along the coast of its

community.

The Valencian Community is located on the eastern coast of the Iberian Peninsula.

Geographically, it extends from the Sénia River to Pilar de la Horadada, beyond the

mouth of the Segura River, with a coastline 644 km long. Throughout the year, the

weather is dry and, in general, the temperature varies from 6oC to 30oC. The average

water temperature goes through extreme seasonal variations throughout the year.

In summer the average water temperature is above 23oC while in winter the water

temperature is below 16oC.

P. oceanica has an uneven distribution on the Valencian coast: it is widely dis-

tributed on the Alicante coast, while on the Valencian and Castellón coasts it has a very

reduced distribution. The Department of Agriculture, Rural Development, Climate

Emergency and Ecological Transition makes available the mapping and cataloging of

seagrass meadows in this community2.

The Murcian Community has 224 km of coastline is part of the Alicante-Almeŕıa

coastal axis, which forms the only area with a semi-arid Mediterranean climate in the

national territory. The average annual sunshine is very high (2,800-3,000 hours) and

the average annual rainfall (151 mm in Cabo Tiñoso) is one of the lowest in Europe.

The temperature of the Mediterranean coastal waters on the Murcian coast varies

between 29oC in summer and 12oC in winter.

1Available at: https://t.ly/879lk
2Available at: https://t.ly/1g4D4
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The infra-littoral Mediterranean environments are dominated by the meadows of

the species P. oceanica to a maximum depth of between 25 and 30 meters, although it

reaches up to 34 m off Grosa Island. It colonizes both sedimentary and rocky bottoms,

in environments with fairly stable salinity (37-38 UPS), and is not found in hyper

saline environments such as the Mar Menor, due to its inability to tolerate salinities

greater than 38.5 UPS Rúız et al (2009). The locations of P. oceanica are available in

the Spatial Data Infrastructure of Spain, through a Web Map Service3.

In Andalusia, the temperate Mediterranean climate predominates, characterized

by mild winters with irregular rainfall, and dry, hot and sunny summers, which accen-

tuate its characteristics as you move from the coast to the interior of the region. It

has an average annual temperature of approximately 18oC, and more than 300 days

of sunshine a year, with January being the coldest month and August the hottest.

Andalusia is one of the warmest regions in Spain, with an average daily maximum

temperature of 24oC. In 6 months the average temperatures exceed 25oC and in win-

ter the minimum temperature reaches 6oC. The water temperature, on average, varies

between 15.5oC and 23.8oC.

On the Andalusian coast, P. oceanica forms meadows on the infralittoral floor,

from very shallow waters to a variable depth that depends on the transparency of

the water, both on rocky and sandy substrates. For example, on the Almeria coast

it can reach up to 30 meters deep and form very dense meadows. The Consejeŕıa de

Sostenibilidad, Medio Ambiente y Economı́a Azul provides a map with the location

of the Praderas de fanerógamas marinas4.

The Balearic Islands have privileged geographical and climatological conditions.

Due to their location in the center of the western Mediterranean, they are the Mediter-

ranean islands furthest from the coast, in a position equidistant between Africa,

3Available at: https://shorturl.at/HQV06
4Available at: https://shorturl.at/amAEO
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France, and Sardinia, and 170 km from the coast of eastern Spain. This situation con-

ditions its climate, a sub-humid Mediterranean type, with an average annual rainfall

between 350 and 650 mm, with high interannual variations, and mild average tem-

peratures throughout the year, which vary between 5oC and 31oC depending on the

time of year. The water temperature in the Balearic Islands varies throughout the

year due to natural factors and climatic phenomena. During the winter months, the

island experiences temperatures around 15oC to 17oC. In summer, sea temperatures

can exceed 26oC.

P. oceanica occurs in infralittoral seabeds, from very shallow seabeds of 1 m depth

to a maximum depth recorded in the Balearic Islands of 43 meters Marbà et al (2002)

on the island of Cabrera. In the Balearic Islands, P. oceanica meadows develop both

in soft sediments and on rock, and form the dominant climax ecosystem of these

beds. In areas with a steeper platform, the upper limit of the meadow appears at

greater depth due to hydrodynamism, and the meadow appears more fragmented and

restricted to the rocky substrate. In this sense, the meadows of Menorca stand out,

an island that, due to its geographical location, is subject to greater exposure to

waves and storms. The Ministry of Agriculture, Fisheries and Natural Environment

of the Balearic Islands, through the Balearic Institute of Nature, provides a detailed

cartography of P. oceanica locations5.

4.1.2 Random Points Generation

To create random points, we used the software QGIS6 version 3.22.16. We loaded all

information of P. oceanica locations in the QGIS and we used the Random Points in

Extent in the whole area for generating the random points with a minimum distance

between points of 50 meters. For getting the P. oceanica points, we used the Clip tool

for filtering the points inside Posidonia meadows. The selection of Non P. oceanica

5Available at: https://shorturl.at/cjovL
6Available at: https://qgis.org/
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locations, we created a buffer area ranging from 50 meters to 5 kilometers away from

the P. oceanica. Duarte et al. Duarte (1991) stated that P. oceanica grows all along

the coast forming extensive meadows from nearly the water surface to depths up to 40

meters. So, we reduced the buffer considering a maximum depth of 40 meters. Finally,

for getting a similar number of points for location with and without P. oceanica, we

randomly selected the same number of points for both.

4.1.3 Biogeochemical Variables

The Mediterranean Sea Biogeochemical Reanalysis Cossarini et al (2021) (MSBR)

was developed within the Copernicus Marine Environment Monitoring Service frame-

work von Schuckmann et al (2018), the reanalysis integrates the Biogeochemical

Flux Model with a variational data assimilation scheme, using NEMO–OceanVar and

ECMWF ERA5 data Hersbach et al (2020). This dataset was validated through mul-

tiple observational sources, assessing 12 state variables, fluxes, and various metrics.

According to the authors, it presents overall good skill in simulating basin-wide bio-

geochemical variables and variability, allowing diverse communities to explore spatial

and temporal variability in Mediterranean biogeochemistry.

The original publication covered the 1999–2019 period with monthly means of

12 published and validated biogeochemical variables. However, a new version was

released updating the horizontal resolution to 1/24◦ and extension till June 20217. The

reanalysis assimilates surface data and integrates the European Marine Observation

and Data Network (EMODnet) data Mart́ın Mı́guez et al (2019) as initial conditions,

in addition to considering World Ocean Atlas data at the Atlantic boundary, CO2

atmospheric observations, and yearly estimates of riverine nutrient inputs. Details on

model explanation and evaluation are available in the original publication Cossarini

et al (2021).

7Available at: https://t.ly/hYMqb
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Table 3 Biogeochemical variables composing the dataset. Source MSBR Cossarini et al (2021)

Var. Description Unit

O2 Mole concentration of dissolved molecular oxygen in sea water [mmol/m3]

nppv
Net primary production of biomass expressed as carbon per unit
volume in sea water

[mg/m3/day]

dissic Mole concentration of dissolved inorganic carbon in sea water [mol/m3]
talk Sea water alkalinity expressed as mole equivalent [mol/m3]
pH Sea water pH reported on total scale.
NH4 Mole concentration of ammonium in sea water [mol/m3]
NO3 Mole concentration of nitrate in sea water [mol/m3]
PO4 Mole concentration of phosphate in sea water [mol/m3]
chl Mass concentration of chlorophyll in sea water [mg/m3]

phyc
Mole concentration of phytoplankton expressed as carbon in
sea water

[mol/m3]

fpCO2 Surface downward mass flux of carbon dioxide expressed as carbon [kg/m2/s]
spCO2 Surface partial pressure of carbon dioxide in sea water [Pa]

For building the dataset, we selected all 12 variables available in the MSBR, getting

the monthly average for 12 months, ranging from July 2020 until June 2021. We used

these dates because they represent an entire year, considering the most recent data

available in MSBR. The biogeochemical variables are summarized in the Table 3.

It is important to notice that the values for all these variables, were collected

on each point in the dataset, including also information on latitude, longitude,

Spanish autonomous community, and a label for the classes “Posidonia” and

“Non-Posidonia”.

4.1.4 Supplementary Variables

As many studies in the literature states that bathymetry, water salinity, temperature,

and transparency are relevant to predict seagrass locations, we also included these

variables in our dataset.

The Global Ocean Analysis and Forecast Lellouche et al (2019) (GOAF) is based

on the NEMO model Gurvan et al (2020) and it has a resolution at 1/12◦, providing

10 days of 3D global ocean forecasts updated daily. It includes daily and monthly

mean variables on temperature, salinity, currents, sea level, among others8. Despite the

8Available at: https://t.ly/heWA1
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GOAF affords 19 variables, we focused on the two main variables stated by Bertelli et al

(2022), which are salinity and temperature, they were collected considering monthly

average values for an entire year. However as the GOAF available data ranges from

November 2020 to January 2024, we collected data from January 2021 until December

2021.

The European Marine Observation and Data Network (EMODnet) programme is

designed to assemble existing, but fragmented and partly inaccessible, marine data and

to create contiguous and publicly available information layers which are interoperable

and free of restrictions on use, and which encompass whole marine basins Moses and

Vallius (2021). The EMODnet Digital Bathymetry9 is a multilayer bathymetric based

upon a collection of surveys, Composite Digital Terrain Model, and Satellite Derived

Bathymetry data, with a resolution of 1/16◦. As bathymetry is also commonly used

as a predictor variable for seagrasses Bertelli et al (2022), we incorporated it into our

dataset.

Water transparency is another key indicators for water quality assessment. The

data was provided by the Joint Research Centre (JRC) from the satellite sensor

MODIS-Aqua Kd490 climatology10. It indicates how deep the sunlight can pene-

trate in the water, depending on the amount of particles in the water. Particles may

be non-living, e.g. sediment from erosion or other dissolved material or living e.g.

phytoplankton, microscopic algae.

The diffuse attenuation coefficient Kd490 measures the light penetration in the

water column at the blue-green wavelengths (ca. 490 nm). It represents a good indi-

cator of water transparency resulting from the combined action of absorption and

backscattering by the water constituents, and the structure of the surrounding light

field. These additional variables can be visualized in Table 4.

9Available at: https://t.ly/mxefH
10Available at: https://shorturl.at/ahrvV
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Table 4 Additional physical variables added to the dataset. 3.

Var Description Unit Source

so Sea water salinity [psu]
GOAF

thetao Sea water potential temperature [◦C]
depth Measurement of the sea depth [m] EMODnet
transp Water transparency [Kd490 m−1] JRC

Following the creation of this dataset, our focus transitioned to process the data so,

the next section presents the methods and tools used to process and clean the dataset.

4.2 Data Preprocessing

Data preprocessing is a fundamental phase in the machine learning pipeline, especially

when dealing with classification tasks. This step aims to transform the raw, hetero-

geneous data into a refined, standardized format that machine learning algorithms

can digest. The overall goal is to provide these algorithms with a database that not

only speeds up their understanding, but also increases their performance, paving the

way for more accurate and reliable predictions. This phase starts with cleaning the

raw data by removing missing/null values and outliers. It is also part of this phase to

transform the data in a way that the entire dataset can be on the same scale.

4.2.1 Data Cleanup

In real-world datasets, missing values are a common occurrence and can significantly

impact model performance. Techniques such as imputation, in which missing values

are replaced by statistically derived estimates, or the removal of incomplete instances

are employed. Furthermore, identifying and dealing with outliers is crucial to ensuring

the robustness of the model.

As the dataset has a significant number of points, for dealing with the missing

values (null values), we decided removing these points, meaning that, for any point in

the dataset, if any variable present in Table 3 or Table 4 does not have a value, that
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Location P. oceanica Non P. oceanica
Catalonia 940 961
Valencia 996 1,108
Murcia 471 532
Balearic Islands 303 395
Andalucia 154 160
Total 2,864 3,156

Table 5 Total number of random points generated for
each Spanish autonomous community.

point is discarded. The data points with null values were removed from the dataset

by using the Pandas function dropna11.

The outliers were removed by applying the Z-Score method. In this method, each

data point is assigned a Z-Score, calculated as the number of standard deviations it is

from the dataset mean. The Z-Score provides a standardized measure of how unusual

or extreme a data point is within the distribution. We used its implementation in

SciPy Virtanen et al (2020) python library, with the threshold set to 3, indicating

that data points beyond three standard deviations from the mean were considered

outliers and therefore discarded. Finally, the “clean” version of the dataset has 174

columns and 6,020 rows. The total amount of points with and without P. oceanica in

each Spanish autonomous community is summarized in Table 5.

4.2.2 Data Scaling

Scaling a dataset is essential when its variables has different units or magnitudes.

Scaling or normalization help to avoid distortions that may arise due to numerical

disparities between variables. This is particularly relevant for algorithms that rely

on distance metrics, such as SVC or KNN, ensuring that each feature contributes

proportionately to the model learning process.

So, for scaling the dataset, we used the MinMaxScaler algorithm implemented in

scikit-learn library. It specifically transforms data by scaling it to a specified range

between 0 and 1, such that all variables values will be in the range [0, 1]. This method

11Documentation: https://www.w3schools.com/python/pandas/ref df dropna.asp
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operates by subtracting the minimum value in a feature and then dividing by the

range (the difference between the maximum and minimum values).

4.3 Model Development

Our results were developed on top of scikit-learn Pedregosa et al (2011), a Python

library that provides state-of-the-art implementations of machine learning algorithms.

In machine learning, every instance of a particular dataset is represented by a set of

variables (or features). If instances are given with known labels (i.e. the corresponding

correct outputs) then the learning scheme is known as supervised Muhammad and

Yan (2015).

As stated in Section 4.1, our dataset contains a label indicating the presence or

absence of P. oceanica and the variables referring to biogeochemical information,

shown in Table 3, as well as, the other variables, presented in Table 4. So, we imple-

mented and tested a set of supervised machine learning algorithms, reported in the

following section.

4.3.1 Supervised Machine Learning Models

Supervised machine learning algorithms form a basis of predictive modeling, lever-

aging labeled datasets to learn and make predictions based on input features. In this

type of automatic learning, the algorithms are trained on historical data where input

variables are paired with corresponding output labels. The main goal is developing

a map function that can accurately predict output labels for new and unseen data.

During the development of the model, we tested all scikit-learn supervised algo-

rithms; however, in this paper, we only present the 6 methods with the best prediction

accuracy, emphasizing the model with the best results.

Decision Trees (DT) Quinlan (1986) are a supervised learning method used for

classification and regression. Its goal is to create a model that predicts the value of a

target variable by learning simple decision rules inferred from the data features. The
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algorithm creates a tree, finding for each node the variable that will yield the largest

information gain. Trees are grown to their maximum size and then a pruning step is

usually applied to improve the ability of the tree to generalize to unseen data. The

generated trees are converted into sets of if-then rules. The accuracy of each rule is

then evaluated to determine the order in which they should be applied.

Random Forests. Significant improvements in classification accuracy have

resulted from growing an ensemble of decision trees and letting them vote for the most

popular. In order to grow these ensembles, random vectors are generated that govern

the growth of each tree in the ensemble. After a large number of trees is generated, they

vote for the most popular. Random Forests (RF) are a combination of tree predictors

such that each tree depends on the values of a random vector sampled independently

and with the same distribution for all trees in the forest Breiman (2001).

AdaBoost. The core principle of AdaBoost Freund and Schapire (1997) is to fit

a sequence of weak learners (i.e., models that are only slightly better than random

guessing, such as small decision trees) on repeatedly modified versions of the data. The

predictions from all of them are then combined through a weighted majority vote (or

sum) to produce the final prediction. The data modifications at each so-called boosting

iteration consists of applying weights w1, w2, ..., wn to each of the training samples.

Initially, those weights are all set to wi = 1/N , so that the first step simply trains a

weak learner on the original data. For each successive iteration, the sample weights

are individually modified and the learning algorithm is reapplied to the reweighted

data. At a given step, those training examples that were incorrectly predicted by the

boosted model induced at the previous step have their weights increased, whereas the

weights are decreased for those that were predicted correctly. As iterations proceed,

examples that are difficult to predict receive ever-increasing influence. Each subsequent

weak learner is thereby forced to concentrate on the examples that are missed by the

previous ones in the sequence Hastie et al (2009).
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Neighbors-based classification Cover and Hart (1967) is a type of instance-

based learning that stores instances of the training data. Classification is computed

from a simple majority vote of the nearest neighbors of each point: a query point

is assigned the data class which has the most representatives within the K nearest

neighbors (KNN) of the point. During the training phase, the KNN algorithm stores

the entire training dataset as a reference. When making predictions, it calculates the

distance between the input data point and all the training examples, using a chosen

distance metric such as Euclidean distance. Next, the algorithm identifies the K nearest

neighbors to the input data point based on their distances, assigning the most common

class label among these neighbors.

A support vector machine constructs a hyper-plane or set of hyper-planes in a

high or infinite dimensional space, which can be used for classification, regression or

other tasks. Intuitively, a good separation is achieved by the hyper-plane that has the

largest distance to the nearest training data points of any class (so-called functional

margin), since in general the larger the margin the lower the generalization error of the

classifier Boser et al (1992). Support Vector Classifiers (SVC) can be effective in high

dimensional spaces, even when the number of dimensions is greater than the number

of samples. Also, it is memory efficient, as it uses a subset of training points in the

decision function (support vectors).

Multi-layer Perceptron (MLP) Rumelhart et al (1986) is a back-propagation

neural network algorithm. Characterized by its layered structure, the MLP consists

of an input layer, one or more hidden layers, and an output layer. Each layer com-

prises interconnected nodes, or neurons, with each connection possessing an associated

weight. The learning process occurs through a series of forward and backward passes,

where input data is propagated through the network, and the model adjusts its weights

based on the error between predicted and actual outcomes. The algorithm repeatedly

adjusts the weights of the connections in the network so as to minimize a measure of
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the difference between the actual output vector of the net and the desired output vec-

tor. As a result of the weight adjustments, internal ‘hidden’ neurons, which are not

part of the input or output, come to represent important features of the task domain,

and the regularities in the task are captured by the interactions of these neurons.

4.3.2 Model Evaluation

Evaluating the performance of a machine learning classification algorithm is a fun-

damental phase in the model development. This step allows to understand the

effectiveness of the algorithm and its potential for generalization beyond the limits of

the training data. Effective evaluation not only assesses the extent to which the model

has learned patterns from a given dataset, but also sheds light on its adaptability and

predictive capabilities when faced with new and unseen instances.

For evaluating the models, we first split the dataset into training and test sets,

a pivotal step for assessing the model’s ability to generalize to unseen data. It also

ensures that the performance of the model is not overly influenced by the data on

which it was trained and can effectively adapt to new, unseen points. At this point,

we used the train test split function of scikit-learn, which takes the dataset

as input considering its variables as X and the label as y. The function returns four

subsets: the training data (X train, y train) and the testing data (X test, y test).

The split was defined to 0.5, so it returned half of the dataset for training the classifiers

and half as the test dataset.

With the training dataset, we applied the scikit-learn KFold function which

operates by partitioning the dataset into K equally sized folds, ensuring that each

observation appears in exactly one training and one validation set. The function

returns an iterable of indices, representing the split positions for each fold. This allows

to iterate through the folds, training and evaluating the model K times, each time

using a different fold as the validation set. For all prediction tests we defined a 5-fold

cross-validation, meaning that the dataset was divided into five subsets. The model
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was trained on four folds and validated on the remaining one, and this process was

repeated five times, with each fold acting as the validation set exactly once. This

procedure was applied for all classifiers reported in Section 2.

The evaluation of machine learning performance is performed through metrics.

These metrics, rooted in statistical and mathematical principles, provide a comprehen-

sive assessment of a model’s predictive accuracy, precision, recall, and other essential

facets. These metrics form the foundation for making informed decisions about model

deployment, optimization, and the overall success of machine learning endeavors. We

evaluated the models considering the following metrics.

Confusion Matrix is a tool for evaluating classification models. It provides a

detailed breakdown of the model’s predictions, including true positives, true nega-

tives, false positives, and false negatives. Accuracy is a straightforward measure that

calculates the ratio of correctly predicted instances to the total number of instances.

While easy to interpret, accuracy alone may be insufficient, especially in the presence

of imbalanced datasets. To compute the Confusion Matrices in this paper, we called

the scikit-learn function confusion matrix.

Precision, Recall, and F1-score offer a more nuanced evaluation, especially in

imbalanced scenarios. Precision measures the proportion of correctly predicted positive

instances among all instances predicted as positive, while recall gauges the proportion

of correctly predicted positive instances among all actual positive instances. The F1-

score is the harmonic mean of precision and recall, providing a balanced assessment.

These values are returned by the scikit-learn function classification report.

Support refers to the number of instances or samples in each class. It provides

insights into the distribution of data across different classes. In classification reports

or confusion matrices, you can observe the support for each class, helping to identify

whether the model is trained on a balanced or imbalanced dataset. It is particularly
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crucial when dealing with imbalanced classes, as it aids in assessing the significance

and representation of each class in the dataset.

Macro Average calculates the average performance metric (such as precision,

recall, or F1-score) across all classes without considering class imbalance. Each class is

given equal weight in the calculation, irrespective of the number of instances in each

class. This approach provides a uniform evaluation across different classes, making

it particularly useful when all classes are considered equally important. Weighted

Average, on the other hand, considers the class imbalance by calculating the average

metric while taking into account the number of instances in each class. Larger classes

have a proportionally greater impact on the average, acknowledging their significance

in the overall performance of the model. Weighted average is beneficial in scenarios

where class imbalance is prevalent, as it ensures that the evaluation metric is more

reflective of the model’s performance on the majority classes.

ROC Curve (Receiver Operating Characteristic) serves as a visual representation

in binary classification, representing the trade-off between sensitivity and specificity

at various classification thresholds. Sensitivity, which indicates the correct identifica-

tion of positive instances, is plotted against the false positive rate, representing the

misclassification of negative instances. This curve provides insights into a model’s

performance at different decision thresholds, with the Area Under the ROC Curve

(AUC-ROC) offering a scalar measure of overall discriminative ability. Valuable in

imbalanced data sets or when considering variable costs of misclassification, the ROC

curve allows practitioners to evaluate and compare the performance of classification

models, guiding decisions about model suitability for specific tasks.

Features Importance provides insights into the importance of each variable in

making predictions. It helps users understand which features contribute the most to

the predictive power of the model. For example, in a Random Forest, each decision tree

in the is trained on a random subset of the data, and at each split in a tree, a subset
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of features is considered. The feature importance calculates the relative importance

of each feature based on how frequently a feature is used to split the data across all

the trees in the forest. Features with higher importance values are considered more

influential in the model’s decision-making process. A higher value indicates that the

feature is more effective at reducing impurity or increasing information gain when

used in tree splits. The feature importance values represent the relative importance

of features in a machine learning model and are unitless. The values are normalized,

meaning they sum to 1, allowing for a comparison of the relative contributions of

different features to the model’s predictions.

5 Conclusions

This study provides compelling evidence of the significant impact of P. oceanica on

water conditions in coastal ecosystems at a global scale. Using augmented research

methodology we curated an expansive dataset comprising 174 biogeochemical and

physical properties, aggregating data from several open sources of all autonomous

communities in Spain bathed by the Mediterranean Sea. With this dataset, we achieved

a precision rate of up to 90% in determining the plant exact location. This method

can be utilized to identify seagrass from indirect sources in other locations.

Our machine learning analysis revealed a robust correlation between the location

of P. oceanica meadows and the water biogeochemical properties, allowing to identify

key indicators that correlate with the presence of the seagrass. Notably, carbon-related

variables such as net biomass production, downward surface mass flux and surface par-

tial pressure of carbon dioxide, exhibited distinct alterations in areas with P. oceanica,

suggesting their potential utility as indirect indicators of seagrass meadow locations

and confirming that this seagrass is responsible for carbon sequestration. Further-

more, it was possible to perceive an increase on oxygen production in the areas with
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P. oceanica, because during the process of photosynthesis, seagrass absorbs carbon

dioxide from the water column and convert it into oxygen.

The findings of our study offer valuable insights that can inform the development of

targeted conservation strategies for preserving marine ecosystems. By considering sev-

eral variables associated with the presence of seagrass, such strategies can contribute

to the long-term sustainability of coastal habitats and the preservation of marine bio-

diversity. This is particularly important considering the growing recognition of the

crucial role that coastal ecosystems play in regulating the climate. P. oceanica, in par-

ticular, stands out for its ability to sequester carbon dioxide and mitigate the impacts

of climate change, highlighting its importance as a natural climate solution.

Data and Code Availability

The dataset and the python code for processing it, training and evaluating the models,

are available at https://github.com/celiotrois/posidonia biogeochemical.
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Rúız JM, Maŕın-Guirao L, Sandoval-Gil JM (2009) Responses of the mediterranean

seagrass posidonia oceanica to in situ simulated salinity increase. Botanica Marina

52(5):459–470. https://doi.org/doi:10.1515/BOT.2009.051, URL https://doi.org/

10.1515/BOT.2009.051

Ruiz JM, E. Guillén E, Ramos Segura A, et al (2015) Atlas de las praderas marinas

de España. IEO/IEL/UICN, Murcia-Alicante-Málaga, URL http://www.ieo.es/es/

39

https://doi.org/10.1016/j.marpolbul.2006.08.032
https://digital.csic.es/handle/10261/43979
https://digital.csic.es/handle/10261/43979
https://doi.org/10.1016/j.ecolind.2010.07.012
https://doi.org/10.1016/j.ecolind.2010.07.012
https://www.sciencedirect.com/science/article/pii/S1470160X10001354
https://www.sciencedirect.com/science/article/pii/S1470160X10001354
https://doi.org/doi:10.1515/BOT.2009.051
https://doi.org/10.1515/BOT.2009.051
https://doi.org/10.1515/BOT.2009.051
http://www.ieo.es/es/atlas-praderas-marinas
http://www.ieo.es/es/atlas-praderas-marinas


atlas-praderas-marinas
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