# Code for different variants of U-Net # Some parts taken from https://github.com/milesial/Pytorch-UNet # Implements light (half feature channels) and lighter (quarter number of feature maps) U-Net import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import torch.nn.parallel class BlurPool(nn.Module): def __init__(self, channels, pad_type='reflect', filt_size=4, stride=2, pad_off=0): super(BlurPool, self).__init__() self.filt_size = filt_size self.pad_off = pad_off self.pad_sizes = [int(1. * (filt_size - 1) / 2), int(np.ceil(1. * (filt_size - 1) / 2)), int(1. * (filt_size - 1) / 2), int(np.ceil(1. * (filt_size - 1) / 2))] self.pad_sizes = [pad_size + pad_off for pad_size in self.pad_sizes] self.stride = stride self.off = int((self.stride - 1) / 2.) self.channels = channels if (self.filt_size == 1): a = np.array([1., ]) elif (self.filt_size == 2): a = np.array([1., 1.]) elif (self.filt_size == 3): a = np.array([1., 2., 1.]) elif (self.filt_size == 4): a = np.array([1., 3., 3., 1.]) elif (self.filt_size == 5): a = np.array([1., 4., 6., 4., 1.]) elif (self.filt_size == 6): a = np.array([1., 5., 10., 10., 5., 1.]) elif (self.filt_size == 7): a = np.array([1., 6., 15., 20., 15., 6., 1.]) filt = torch.Tensor(a[:, None] * a[None, :]) filt = filt / torch.sum(filt) self.register_buffer('filt', filt[None, None, :, :].repeat((self.channels, 1, 1, 1))) self.pad = get_pad_layer(pad_type)(self.pad_sizes) def forward(self, inp): if (self.filt_size == 1): if (self.pad_off == 0): return inp[:, :, ::self.stride, ::self.stride] else: return self.pad(inp)[:, :, ::self.stride, ::self.stride] else: return F.conv2d(self.pad(inp), self.filt, stride=self.stride, groups=inp.shape[1]) def get_pad_layer(pad_type): if (pad_type in ['refl', 'reflect']): PadLayer = nn.ReflectionPad2d elif (pad_type in ['repl', 'replicate']): PadLayer = nn.ReplicationPad2d elif (pad_type == 'zero'): PadLayer = nn.ZeroPad2d else: print('Pad type [%s] not recognized' % pad_type) return PadLayer class BlurPool1D(nn.Module): def __init__(self, channels, pad_type='reflect', filt_size=3, stride=2, pad_off=0): super(BlurPool1D, self).__init__() self.filt_size = filt_size self.pad_off = pad_off self.pad_sizes = [int(1. * (filt_size - 1) / 2), int(np.ceil(1. * (filt_size - 1) / 2))] self.pad_sizes = [pad_size + pad_off for pad_size in self.pad_sizes] self.stride = stride self.off = int((self.stride - 1) / 2.) self.channels = channels # print('Filter size [%i]' % filt_size) if (self.filt_size == 1): a = np.array([1., ]) elif (self.filt_size == 2): a = np.array([1., 1.]) elif (self.filt_size == 3): a = np.array([1., 2., 1.]) elif (self.filt_size == 4): a = np.array([1., 3., 3., 1.]) elif (self.filt_size == 5): a = np.array([1., 4., 6., 4., 1.]) elif (self.filt_size == 6): a = np.array([1., 5., 10., 10., 5., 1.]) elif (self.filt_size == 7): a = np.array([1., 6., 15., 20., 15., 6., 1.]) filt = torch.Tensor(a) filt = filt / torch.sum(filt) self.register_buffer('filt', filt[None, None, :].repeat((self.channels, 1, 1))) self.pad = get_pad_layer_1d(pad_type)(self.pad_sizes) def forward(self, inp): if (self.filt_size == 1): if (self.pad_off == 0): return inp[:, :, ::self.stride] else: return self.pad(inp)[:, :, ::self.stride] else: return F.conv1d(self.pad(inp), self.filt, stride=self.stride, groups=inp.shape[1]) def get_pad_layer_1d(pad_type): if (pad_type in ['refl', 'reflect']): PadLayer = nn.ReflectionPad1d elif (pad_type in ['repl', 'replicate']): PadLayer = nn.ReplicationPad1d elif (pad_type == 'zero'): PadLayer = nn.ZeroPad1d else: print('Pad type [%s] not recognized' % pad_type) return PadLayer def count_trainable_parameters(model): # to count trainable parameters return sum(p.numel() for p in model.parameters() if p.requires_grad) class double_conv(nn.Module): def __init__(self, in_ch, out_ch): super(double_conv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, x): x = self.conv(x) return x class inconv(nn.Module): def __init__(self, in_ch, out_ch): super(inconv, self).__init__() self.conv = double_conv(in_ch, out_ch) def forward(self, x): x = self.conv(x) return x class down(nn.Module): def __init__(self, in_ch, out_ch): super(down, self).__init__() self.mpconv = nn.Sequential( nn.MaxPool2d(2), double_conv(in_ch, out_ch) ) def forward(self, x): x = self.mpconv(x) return x class down_blur(nn.Module): def __init__(self, in_ch, out_ch): super(down_blur, self).__init__() self.mpconv = nn.Sequential( nn.MaxPool2d(2, stride=1), BlurPool(in_ch, filt_size=4, stride=2), double_conv(in_ch, out_ch) ) def forward(self, x): x = self.mpconv(x) return x class up(nn.Module): def __init__(self, in_ch, out_ch): super(up, self).__init__() self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv = double_conv(in_ch, out_ch) def forward(self, x1, x2): #x1 = self.up(x1) x1 = nn.functional.interpolate(x1, scale_factor=2, mode='nearest') # input is CHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2)) x = torch.cat([x2, x1], dim=1) x = self.conv(x) return x class outconv(nn.Module): def __init__(self, in_ch, out_ch): super(outconv, self).__init__() self.conv = nn.Conv2d(in_ch, out_ch, 1, bias=False) def forward(self, x): x = self.conv(x) return x ## U-Net with dropout. Dropout applied at innermost 3 up and down layers as suggested in https://arxiv.org/pdf/1806.05034.pdf. The argument dropout_at_eval allows us to use dropout layers in evaluation mode. class UNet_Dropout(nn.Module): def __init__(self, in_channels, out_channels, dropout_rate=.5, dropout_at_eval=True): super(UNet_Dropout, self).__init__() self.inc = inconv(in_channels, 64) self.down1 = down(64, 128) self.down2 = down(128, 256) self.down3 = down(256, 512) self.down4 = down(512, 512) self.up1 = up(1024, 256) self.up2 = up(512, 128) self.up3 = up(256, 64) self.up4 = up(128, 64) self.outc = outconv(64, out_channels) self.drop = nn.Dropout(p=dropout_rate) self.dropout_at_eval = dropout_at_eval def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.drop(self.down2(x2)) x4 = self.drop(self.down3(x3)) x5 = self.drop(self.down4(x4)) x = self.drop(self.up1(x5, x4)) x = self.drop(self.up2(x, x3)) x = self.drop(self.up3(x, x2)) x = self.up4(x, x1) x = self.outc(x) return x def eval(self, ): if not self.dropout_at_eval: return self.train(False) else: self.train(False) for m in self.modules(): if m.__class__.__name__.startswith('Dropout'): m.train() ## U-Net Blur with dropout. Dropout applied at innermost 3 up and down layers as suggested in https://arxiv.org/pdf/1806.05034.pdf. The argument dropout_at_eval allows us to use dropout layers in evaluation mode. class UNet_Blur_Dropout(nn.Module): def __init__(self, in_channels, out_channels, dropout_rate=.5, dropout_at_eval=True): super(UNet_Blur_Dropout, self).__init__() self.encoder = UNet_Blur_Dropout_Encoder(in_channels, dropout_rate) self.up1 = up(1024, 256) self.up2 = up(512, 128) self.up3 = up(256, 64) self.up4 = up(128, 64) self.outc = outconv(64, out_channels) self.drop = nn.Dropout(p=dropout_rate) self.dropout_at_eval = dropout_at_eval def forward(self, x): x1, x2, x3, x4, x5 = self.encoder(x) x = self.drop(self.up1(x5, x4)) x = self.drop(self.up2(x, x3)) x = self.drop(self.up3(x, x2)) x = self.up4(x, x1) x = self.outc(x) return x def eval(self, ): if not self.dropout_at_eval: return self.train(False) else: self.train(False) for m in self.modules(): if m.__class__.__name__.startswith('Dropout'): m.train() class UNet_Blur_Dropout_Encoder(nn.Module): def __init__(self, in_channels, dropout_rate=0): super(UNet_Blur_Dropout_Encoder, self).__init__() self.inc = inconv(in_channels, 64) self.down1 = down_blur(64, 128) self.down2 = down_blur(128, 256) self.down3 = down_blur(256, 512) self.down4 = down_blur(512, 512) self.drop = nn.Dropout(p=dropout_rate) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.drop(self.down2(x2)) x4 = self.drop(self.down3(x3)) x5 = self.drop(self.down4(x4)) return x1, x2, x3, x4, x5