import torch from torch import nn from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) # classes class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout=0.0): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads=8, dim_head=64, dropout=0.0): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head**-0.5 self.attend = nn.Softmax(dim=-1) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False) self.to_out = nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout)) if project_out else nn.Identity() def forward(self, x): qkv = self.to_qkv(x).chunk(3, dim=-1) q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) out = torch.matmul(attn, v) out = rearrange(out, "b h n d -> b n (h d)") return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.0): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append( nn.ModuleList( [ PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout)), PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout)), ] ) ) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class ViT(nn.Module): def __init__( self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool="cls", channels=3, dim_head=64, dropout=0.0, emb_dropout=0.0 ): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert ( image_height % patch_height == 0 and image_width % patch_width == 0 ), "Image dimensions must be divisible by the patch size." num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width assert pool in {"cls", "mean"}, "pool type must be either cls (cls token) or mean (mean pooling)" self.to_patch_embedding = nn.Sequential( Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1=patch_height, p2=patch_width), nn.Linear(patch_dim, dim), ) self.linear_proj_layer = nn.Linear(patch_dim, dim) # TODO: Update pos_embedding. self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.pool = pool self.to_latent = nn.Identity() # self.mlp_head = nn.Sequential(nn.LayerNorm(dim), nn.Linear(dim, num_classes)) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, "() n d -> b n d", b=b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, : (n + 1)] x = self.dropout(x) x = self.transformer(x) x = x.mean(dim=1) if self.pool == "mean" else x[:, 0] x = self.to_latent(x) return self.mlp_head(x) def patch_forward(self, patches): """Compute the forward pass of ViT with patches instead of single frame. Args: patches (torch.Tensor): A tensor of shape [batch_size, n_patches, token_length]. Returns: torch.tensor: A tensor of shape [batch_size, ] """ b, n, _ = patches.shape patches = self.linear_proj_layer(patches) cls_tokens = repeat(self.cls_token, "() n d -> b n d", b=b) x = torch.cat((cls_tokens, patches), dim=1) # x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x = self.transformer(x) return x