Acta Crystallogr Sect E Struct Rep OnlineActa Crystallogr Sect E Struct Rep OnlineActa Cryst. EActa Crystallographica Section E: Structure Reports Online1600-5368International Union of Crystallography227988823394017bh243310.1107/S1600536812027900ACSEBHS1600536812027900Organic Papers(Z,1S,10aR)-(−)-Menthyl 1-hy­droxy-1,2,3,5,6,7,10,10a-octa­hydro­pyrrolo­[1,2-a]azocine-10a-carboxyl­ateC21H35NO3MuroniDanielea*NapolitanoEmilioaPerezOlivierbCuledduNicolacSabaAntonioaDipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, ItalyCRISMAT, UMR CNRS 6508, ENSICAEN, 6 Boulevard du Marechal Juin, F-14050 Caen CEDEX 4, FranceCNR Istituto di Chimica Biomolecolare sez. di Sassari, via La Crucca, Baldinca-Li Punti, 07040 Sassari, ItalyCorrespondence e-mail: dmuroni@uniss.it01720122762012276201268Pt 7e120700o2224o222504520121962012© Muroni et al. 20122012This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.A full version of this article is available from Crystallography Journals Online.

The structure determination confirms the stereochemistry of the title compound, C21H35NO3, obtained as an inter­mediate in the enanti­oselective synthesis of de­oxy­nojirimicine analogs. The system contains a pyrrolo­[1,2-a]azocine backbone, which was synthesized by a domino process involving a [2,3]-sigmatropic rearrangement. The incorporation of a chiral auxiliary (−)-menthyl, whose stereocentres are not involved during the synthesis, enables the assignation of absolute configuration. The crystal structure features O—H⋯O hydrogen bonds involving the hy­droxy groups as donors and the carbonyl groups as acceptors, which link the mol­ecules into chains running along [010].

Related literature  

For the construction of the pyrrolo­[1,2-a]azocine backbone by the domino sequence, see: Clark et al. (2001); Muroni et al. (2006). For domino processes promoted by catalytic decomposition of diazo­compounds, see: Doyle et al. (1997). For [2,3]-sigmatropic rearrangement, see: Sweeney (2009); Zhang & Wang (2010). For manzamine alkaloids and other biologically active compounds containing the pyrrolo­[1,2-a]azocine subunit, see: Rao et al. (2006); Yap et al. (2011); Sun et al. (2011). For de­oxy­nojirimicine and imino­sugars, see: Asano et al. (2000); Watson et al. (2001). For chiral auxiliary (−)-menthyl, see: Wang et al. (2006).

Experimental   <sec id="sec2.1.1"><title>Crystal data  

C21H35NO3

M r = 349.5

Orthorhombic,

a = 10.7804 (8) Å

b = 7.7938 (7) Å

c = 23.8862 (17) Å

V = 2006.9 (3) Å3

Z = 4

Mo Kα radiation

μ = 0.08 mm−1

T = 120 K

0.36 × 0.13 × 0.13 mm

Data collection  

Bruker APEXII CCD diffractometer

Absorption correction: multi-scan (SADABS; Sheldrick, 2008) T min = 0.716, T max = 0.746

21709 measured reflections

3281 independent reflections

2331 reflections with I > 3σ(I)

R int = 0.048

Refinement  

R[F 2 > 2σ(F 2)] = 0.041

wR(F 2) = 0.047

S = 1.23

3281 reflections

230 parameters

H atoms treated by a mixture of independent and constrained refinement

Δρmax = 0.23 e Å−3

Δρmin = −0.28 e Å−3

<p>Data collection: <italic>APEX2</italic> (Bruker, 2005<xref ref-type="bibr" rid="bb3"> ▶</xref>); cell refinement: <italic>SAINT</italic> (Bruker, 2007<xref ref-type="bibr" rid="bb4"> ▶</xref>); data reduction: <italic>SAINT</italic>; program(s) used to solve structure: <italic>SIR2011</italic> (Burla <italic>et al.</italic>, 2012<xref ref-type="bibr" rid="bb5"> ▶</xref>); program(s) used to refine structure: <italic>JANA2006</italic> (Petricek <italic>et al.</italic>, 2006<xref ref-type="bibr" rid="bb10"> ▶</xref>); molecular graphics: <italic>DIAMOND</italic> (Brandenburg & Putz, 2005<xref ref-type="bibr" rid="bb2"> ▶</xref>) and <italic>ORTEP-3</italic> (Farrugia, 1997<xref ref-type="bibr" rid="bb8"> ▶</xref>); software used to prepare material for publication: <italic>publCIF</italic> (Westrip, 2010<xref ref-type="bibr" rid="bb18"> ▶</xref>) and <italic>PLATON</italic> (Spek, 2009<xref ref-type="bibr" rid="bb13"> ▶</xref>).</p></sec></sec><sec sec-type="supplementary-material"><title>Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812027900/bh2433sup1.cif

Supplementary material file. DOI: 10.1107/S1600536812027900/bh2433Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812027900/bh2433Isup3.hkl

Supplementary material file. DOI: 10.1107/S1600536812027900/bh2433Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2433).

The authors are thankful to the Fondazione Banco di Sardegna and the Regione Autonoma della Sardegna (programma operativo FSE Sardegna 2007–2013 legge regionale 7 agosto 2007, n. 7 promozione della ricerca scientifica e dell’innovazione tecnologica in Sardegna). EN is particularly grateful to Professor D. Chateigner and the staff of the CRISMAT Laboratoire (Caen, France) for crystallographic support and useful discussions about diffraction.

supplementary crystallographic information Comment

The pyrrolo[1,2-a]azocine backbone is contained as the CE subunit in the structures of manzamine and ircinal alkaloids (Rao et al., 2006), as well as other natural and synthetic compounds which have shown interesting biological properties (Yap et al., 2011; Sun et al., 2011). Among the methods for a rapid construction of bicycle alkaloid, domino processes promoted by catalytic decomposition of diazo compounds have become commonly employed since they give a rapid access to complex structures in a stereoselective way (Doyle et al., 1997; Clark et al., 2001).

The used route for the synthesis of the title compound is described in Figure 1. The diazocarbonyl derivative 1 was synthesized starting from L-proline and (–)-menthyl acetate. The decomposition in refluxing toluene with Cu(acac)2 or Rh2(OAc)4 brought in one step to the pyrroloazocine alkaloid 3. The decomposition triggers a domino process that involved a carbenoidic attack to the nitrogen lone pair and the formation of the [5,5]-spirocyclic ammonium ylide 2. The ylide undergoes a [2,3]-sigmatropic rearrangement and it was possible to isolate the alkaloid 3 in 70% yield and 97% enantiomeric excess (Muroni et al., 2006). The stereo specific nature of [2,3]-sigmatropic rearrangement allows a complete transfer of chirality (Sweeney, 2009; Zhang & Wang, 2010). As first step in the conversion in deoxynojirimicine analogs (Asano et al., 2000; Watson et al., 2001), the reduction of the carbonyl with L-selectride gave, after chromatography and recrystallization, the title compound 4 as a single diastereoisomer. The structure determination confirms the configuration of the quaternary stereocentre formed during the domino sequence and the configuration of the carbinol function, which is in accordance with the attack of L-selectride at the opposite face of the ester function.

The structural model (Fig. 2) showed standard bond lengths and angles; the X-ray analysis confirmed a cis C7═C8 double bond in the azocine ring, and the stereochemistry of C atoms known from literature in the auxiliary chiral (–)-menthyl: S-C13, R-C12 and R-C16. Two new chiral centers were identified S-C1 and R-C10.

The crystal structure (Fig. 3 and 4) consists of one type of O—H···O hydrogen-bond, with each molecule acting as a donor and acceptor of two hydrogen bonds. One molecule is linked through hydrogen interaction to other two symmetry-related molecules in the crystal, resulting in the formation of chains parallel to the [010] direction.

Experimental

All 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded on a Varian Mercury plus 400 spectrometer. Infrared (IR) spectra were performed on a FT/IR-480plus JASKO spectrophotometer. The optical rotations were measured by a polarimeter P-1010 JASCO in a 1 dm tube. All reagents and solvents employed were reagent grade materials purified by standard methods and redistilled before use. (1R)-(–)-menthyl acetate (>98%) and L-proline (>99.0%) were purchased from Sigma-Aldrich.

To a solution of compound 3 (210 mg, 0.6 mmol, see Fig. 1) in dry THF (5 ml) was added L-selectride (1.21 ml of 1.0 M solution in THF, 1.21 mmol) dropwise at 273 K. The reaction mixture was stirred for 1 h at 273 K and then allowed to warm to room temperature for another 1 h. The mixture was then diluted with EtOAc (50 ml) and filtered through a pad of silica gel, which was rinsed with EtOAc (50 ml). The filtrate was concentrated under reduced pressure, and the residue purified by flash chromatography (petroleum ether/ethyl acetate, 9:1) to give 180 mg of 4 (85%) as white oil. Recrystallization from EtOH/H2O (8:2) gave the title compound 4 as white crystals: m.p. 389 K; [α]25D = -92.94 (c 0.32, CHCl3); 1H NMR (CDCl3): δ 0.74 (d, 3H, J=7.0 Hz), 0.89 (d, 3H, J=6.8 Hz), 0.91 (d, 3H, J=6.8 Hz), 0.80–1.11 (m, 3H), 1.30–1.58 (m, 3H), 1.60–1.73 (m, 3H), 1.73–1.86 (m, 1H), 1.92–2.10 (m, 3H), 2.12–2.32 (m, 3H), 2.37 (d, 1H, J=8.4 Hz), 2.64–2.80 (m, 2H), 2.92 (ddd, 1H, J=15.8, 12.1, 3.1 Hz), 3.00 (dt, 1H, J=9, 5.2 Hz), 3.15 (dt, 1H, J=8.4, 5.2 Hz), 3.98 (q, 1H, J=8.0 Hz), 4.74 (dt, 1H, J=4.4, 10.8 Hz), 5.65–5.80 p.p.m. (m, 2H). 13C NMR (CDCl3): δ 15.71, 20.90, 22.03, 22.91, 25.40, 25.89, 29.12, 31.39, 31.45, 32.50, 34.22, 41.18, 47.07 48.21, 50.04, 74.97, 75.08, 78.01, 126.17, 132.84, 173.64 p.p.m.; IR (neat): 3465, 3019, 2954, 1708, 1456, 1214 cm-1. Anal. Calc. for C21H35NO3: C 72.17, H 10.09, N 4.01%; Found: C 72.20, H 10.05, N 4.05%.

Refinement

All C-bonded H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å and with Uiso(H) = 1.2Ueq(carrier C). The hydroxyl H-atom H1o was located in a difference map, and included in the subsequent refinement with Uiso(H1o) = 1.2Ueq(O1). All H atoms were refined isotropically. The absolute configuration was assigned from the use of the chiral auxiliary (–)-menthyl (Wang et al., 2006) as the starting material, whose stereo centres are not involved in the reaction. Owing to the absence of significant anomalous dispersion for data collected with the Mo radiation, 2332 measured Friedel pairs were merged.

Figures

Synthesis scheme.

The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.

H-bridged molecule of title compound in the solid state. The The O—H···O hydrogen bonding is shown as blue dashed lines.

The crystal packing of the title compound viewed along the b axis. The H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data
C21H35NO3Dx = 1.156 Mg m3
Mr = 349.5Melting point: 389 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 192 reflections
a = 10.7804 (8) Åθ = 3.8–17.2°
b = 7.7938 (7) ŵ = 0.08 mm1
c = 23.8862 (17) ÅT = 120 K
V = 2006.9 (3) Å3Prism, colourless
Z = 40.36 × 0.13 × 0.13 mm
F(000) = 768
Data collection
Bruker APEXII CCD diffractometer3281 independent reflections
Radiation source: sealed X-ray tube2331 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008)h = −15→14
Tmin = 0.716, Tmax = 0.746k = −10→4
21709 measured reflectionsl = −33→33
Refinement
Refinement on FH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0004F2)
wR(F2) = 0.047(Δ/σ)max = 0.016
S = 1.23Δρmax = 0.23 e Å3
3281 reflectionsΔρmin = −0.28 e Å3
230 parametersExtinction correction: B-C type 1 Gaussian isotropic
0 restraintsExtinction coefficient: 16900 (1800)
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å<sup>2</sup>)
xyzUiso*/Ueq
N10.67923 (4)0.06933 (14)0.867458 (19)0.0178 (4)
C40.67762 (4)−0.11800 (4)0.865956 (9)0.0220 (5)
C50.80174 (3)−0.19770 (3)0.849823 (11)0.0257 (6)
C60.83930 (2)−0.17312 (6)0.788428 (13)0.0300 (6)
C70.87823 (6)0.0057 (2)0.77279 (3)0.0269 (6)
C80.80364 (17)0.13680 (12)0.76224 (5)0.0248 (6)
C90.66451 (6)0.12758 (8)0.76547 (3)0.0217 (5)
C100.61339 (12)0.16447 (13)0.82487 (7)0.0164 (5)
C10.63656 (4)0.35106 (14)0.84420 (7)0.0191 (5)
O10.54447 (13)0.46881 (18)0.82643 (6)0.0257 (4)
C20.63894 (2)0.34119 (7)0.90814 (3)0.0217 (5)
C30.67015 (2)0.15400 (4)0.92186 (3)0.0210 (5)
C110.47217 (16)0.1302 (2)0.82373 (7)0.0164 (5)
O20.41170 (12)0.10136 (18)0.78189 (5)0.0266 (4)
O30.42289 (10)0.13359 (17)0.87513 (5)0.0182 (4)
C120.28911 (11)0.1047 (2)0.88055 (3)0.0181 (5)
C170.22301 (3)0.27715 (11)0.880303 (16)0.0229 (6)
C160.08230 (4)0.24991 (5)0.88606 (2)0.0268 (6)
C210.01309 (2)0.42102 (2)0.886679 (15)0.0438 (8)
C150.05454 (3)0.14406 (3)0.93799 (2)0.0280 (6)
C140.12697 (3)−0.02306 (5)0.940244 (13)0.0253 (6)
C130.26755 (15)0.00578 (9)0.93465 (2)0.0188 (5)
C180.34514 (5)−0.16029 (4)0.93837 (3)0.0251 (6)
C200.32327 (3)−0.25601 (4)0.993247 (7)0.0414 (8)
C190.32833 (4)−0.27844 (2)0.888694 (8)0.0426 (8)
H4a0.614688−0.1561110.8403840.0264*
H4b0.6521−0.1613510.9017680.0264*
H5a0.800812−0.3179010.8585910.0309*
H5b0.865733−0.1532070.8737030.0309*
H6b0.904465−0.2521270.7791730.036*
H6a0.772558−0.2091880.7645650.036*
H7a0.9657490.0270440.770190.0323*
H8a0.8406560.2442580.751910.0298*
H9a0.6372410.0162920.7534170.0261*
H9b0.6290270.2073040.7393490.0261*
H1a0.7121040.3934890.8280430.023*
H2a0.5582550.3685560.9226150.0261*
H2b0.7032410.4145690.922270.0261*
H3b0.7490010.1488240.9404590.0251*
H3a0.6034360.1040840.942920.0251*
H12a0.2565290.0389410.8499220.0217*
H17b0.240250.3358030.8458290.0275*
H17a0.252350.345550.9109930.0275*
H16a0.0532480.18750.8539870.0322*
H21a0.0327390.484410.8533790.0526*
H21c−0.0746140.4001510.8880790.0526*
H21b0.0376790.4859980.918970.0526*
H15b−0.0326950.119830.9396460.0336*
H15a0.0722450.2107930.9708140.0336*
H14a0.099119−0.0977750.9108670.0303*
H14b0.10981−0.0808070.9748890.0303*
H13a0.2963570.0712570.966110.0225*
H18a0.430002−0.1230460.9375750.0302*
H20a0.33419−0.1785791.0241120.0496*
H20c0.240371−0.3009480.9937760.0496*
H20b0.381516−0.3486970.9963620.0496*
H19a0.34236−0.2155560.8547210.0512*
H19c0.386534−0.3713570.891130.0512*
H19b0.245414−0.323380.888710.0512*
H1o0.556 (2)0.499 (3)0.7944 (9)0.0309*
Atomic displacement parameters (Å<sup>2</sup>)
U11U22U33U12U13U23
N10.0178 (7)0.0180 (8)0.0174 (7)0.0028 (6)−0.0002 (6)0.0006 (6)
C40.0200 (9)0.0191 (10)0.0268 (10)0.0010 (7)−0.0007 (8)0.0041 (8)
C50.0218 (10)0.0180 (10)0.0374 (11)0.0050 (7)−0.0012 (8)−0.0013 (9)
C60.0215 (10)0.0320 (12)0.0364 (11)0.0038 (9)0.0023 (9)−0.0108 (10)
C70.0169 (9)0.0376 (12)0.0263 (10)−0.0026 (8)0.0056 (8)−0.0079 (10)
C80.0239 (9)0.0303 (11)0.0203 (9)−0.0050 (9)0.0069 (8)−0.0030 (9)
C90.0211 (9)0.0252 (10)0.0189 (9)0.0016 (8)0.0046 (7)−0.0009 (8)
C100.0148 (8)0.0183 (9)0.0162 (8)0.0005 (7)0.0025 (7)0.0033 (8)
C10.0180 (8)0.0179 (9)0.0215 (9)0.0000 (7)0.0040 (7)0.0033 (8)
O10.0307 (7)0.0224 (7)0.0241 (7)0.0078 (6)0.0055 (6)0.0083 (6)
C20.0214 (9)0.0205 (10)0.0232 (9)−0.0018 (8)0.0017 (7)−0.0020 (8)
C30.0173 (9)0.0263 (10)0.0193 (9)0.0007 (8)−0.0017 (7)0.0004 (8)
C110.0193 (8)0.0142 (9)0.0159 (8)0.0040 (7)0.0016 (7)0.0014 (8)
O20.0197 (6)0.0408 (9)0.0192 (7)0.0014 (6)−0.0014 (5)−0.0028 (6)
O30.0139 (6)0.0243 (7)0.0164 (6)−0.0016 (5)0.0022 (5)0.0009 (6)
C120.0132 (8)0.0227 (10)0.0184 (9)−0.0017 (7)0.0015 (6)−0.0005 (8)
C170.0226 (9)0.0239 (11)0.0223 (10)0.0032 (8)0.0007 (8)0.0037 (8)
C160.0189 (9)0.0340 (12)0.0276 (11)0.0040 (9)−0.0018 (8)0.0000 (9)
C210.0283 (11)0.0506 (16)0.0527 (15)0.0167 (11)0.0056 (10)0.0170 (13)
C150.0183 (9)0.0321 (12)0.0336 (11)0.0022 (9)0.0067 (8)−0.0013 (10)
C140.0189 (9)0.0251 (11)0.0318 (11)−0.0023 (8)0.0052 (8)0.0000 (9)
C130.0177 (8)0.0202 (10)0.0185 (9)−0.0009 (7)0.0014 (7)−0.0001 (8)
C180.0202 (9)0.0203 (10)0.0348 (11)0.0020 (8)0.0071 (8)0.0055 (9)
C200.0396 (13)0.0359 (13)0.0485 (13)0.0092 (11)0.0061 (11)0.0186 (11)
C190.0566 (16)0.0222 (12)0.0492 (14)0.0067 (11)0.0135 (12)−0.0031 (10)
Geometric parameters (Å, º)
N1—C41.4605 (11)C11—O31.338 (2)
N1—C101.4450 (16)O3—C121.4654 (16)
N1—C31.4607 (9)C12—C171.5209 (17)
C4—C51.5247 (5)C12—C131.5228 (11)
C4—H4a0.9600C12—H12a0.9600
C4—H4b0.9600C17—C161.5379 (6)
C5—C61.5335 (4)C17—H17b0.9600
C5—H5a0.9600C17—H17a0.9600
C5—H5b0.9600C16—C211.5282 (4)
C6—C71.5029 (18)C16—C151.5195 (7)
C6—H6b0.9600C16—H16a0.9600
C6—H6a0.9600C21—H21a0.9600
C7—C81.324 (2)C21—H21c0.9600
C7—H7a0.9600C21—H21b0.9600
C8—C91.5035 (19)C15—C141.5196 (5)
C8—H8a0.9600C15—H15b0.9600
C9—C101.5492 (17)C15—H15a0.9600
C9—H9a0.9600C14—C131.5379 (16)
C9—H9b0.9600C14—H14a0.9600
C10—C11.5461 (16)C14—H14b0.9600
C10—C111.546 (2)C13—C181.5436 (11)
C1—O11.4169 (17)C13—H13a0.9600
C1—C21.5294 (18)C18—C201.5266 (6)
C1—H1a0.9600C18—C191.5128 (6)
O1—H1o0.81 (2)C18—H18a0.9600
C2—C31.5327 (6)C20—H20a0.9600
C2—H2a0.9600C20—H20c0.9600
C2—H2b0.9600C20—H20b0.9600
C3—H3b0.9600C19—H19a0.9600
C3—H3a0.9600C19—H19c0.9600
C11—O21.214 (2)C19—H19b0.9600
C4—N1—C10119.33 (6)C11—O3—C12117.97 (11)
C4—N1—C3118.20 (5)O3—C12—C17108.98 (11)
C10—N1—C3111.19 (8)O3—C12—C13107.64 (10)
N1—C4—C5113.76 (3)O3—C12—H12a112.00
N1—C4—H4a109.47C17—C12—C13112.28 (7)
N1—C4—H4b109.47C17—C12—H12a107.00
C5—C4—H4a109.47C13—C12—H12a109.00
C5—C4—H4b109.47C12—C17—C16109.87 (7)
H4a—C4—H4b105.00C12—C17—H17b109.47
C4—C5—C6115.00 (2)C12—C17—H17a109.47
C4—C5—H5a109.47C16—C17—H17b109.47
C4—C5—H5b109.47C16—C17—H17a109.47
C6—C5—H5a109.47H17b—C17—H17a109.00
C6—C5—H5b109.47C17—C16—C21111.22 (4)
H5a—C5—H5b103.00C17—C16—C15110.02 (4)
C5—C6—C7115.30 (4)C17—C16—H16a109.00
C5—C6—H6b109.47C21—C16—C15111.69 (4)
C5—C6—H6a109.47C21—C16—H16a107.00
C7—C6—H6b109.47C15—C16—H16a108.00
C7—C6—H6a109.47C16—C21—H21a109.47
H6b—C6—H6a103.00C16—C21—H21c109.47
C6—C7—C8126.38 (9)C16—C21—H21b109.47
C6—C7—H7a117.00H21a—C21—H21c109.00
C8—C7—H7a117.00H21a—C21—H21b109.00
C7—C8—C9124.00 (10)H21c—C21—H21b109.47
C7—C8—H8a118.00C16—C15—C14113.14 (3)
C9—C8—H8a118.00C16—C15—H15b109.00
C8—C9—C10113.14 (8)C16—C15—H15a109.47
C8—C9—H9a109.47C14—C15—H15b109.47
C8—C9—H9b109.47C14—C15—H15a109.47
C10—C9—H9a109.47H15b—C15—H15a106.00
C10—C9—H9b109.47C15—C14—C13112.21 (4)
H9a—C9—H9b105.53C15—C14—H14a109.47
N1—C10—C9112.01 (8)C15—C14—H14b109.47
N1—C10—C1101.14 (11)C13—C14—H14a109.47
N1—C10—C11114.03 (11)C13—C14—H14b109.47
C9—C10—C1112.99 (10)H14a—C14—H14b107.00
C9—C10—C11107.60 (11)C12—C13—C14107.36 (9)
C1—C10—C11109.07 (10)C12—C13—C18113.00 (9)
C10—C1—O1114.00 (10)C12—C13—H13a110.00
C10—C1—C2104.69 (10)C14—C13—C18113.97 (6)
C10—C1—H1a110.00C14—C13—H13a109.00
O1—C1—C2110.07 (10)C18—C13—H13a103.00
O1—C1—H1a105.00C13—C18—C20112.05 (5)
C2—C1—H1a114.00C13—C18—C19113.60 (5)
C1—O1—H1o111.1 (16)C13—C18—H18a105.00
C1—C2—C3105.37 (6)C20—C18—C19110.95 (2)
C1—C2—H2a109.47C20—C18—H18a108.00
C1—C2—H2b109.47C19—C18—H18a106.00
C3—C2—H2a109.47C18—C20—H20a109.47
C3—C2—H2b109.47C18—C20—H20c109.47
H2a—C2—H2b113.00C18—C20—H20b109.47
N1—C3—C2104.74 (6)H20a—C20—H20c109.47
N1—C3—H3b109.47H20a—C20—H20b109.47
N1—C3—H3a109.47H20c—C20—H20b109.47
C2—C3—H3b109.47C18—C19—H19a109.47
C2—C3—H3a109.47C18—C19—H19c109.47
H3b—C3—H3a114.00C18—C19—H19b109.47
C10—C11—O2125.10 (15)H19a—C19—H19c109.47
C10—C11—O3111.82 (14)H19a—C19—H19b109.47
O2—C11—O3123.07 (16)H19c—C19—H19b109.00
Hydrogen-bond geometry (Å, º)
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.81 (2)2.02 (2)2.8259 (19)174 (2)

Symmetry code: (i) −x+1, y+1/2, −z+3/2.

ReferencesAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.Bruker (2007). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.Clark, J. S., Hodgson, P. B., Goldsmith, M. D., Blake, A. J., Cooke, P. A. & Street, L. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3325–3337.Doyle, M. P., McKervey, M. A. & Ye, T. (1997). Modern Catalytic Methods for Organic Synthesis with Diazo Compounds New York: John Wiley and Sons.Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.Muroni, D., Saba, A. & Culeddu, N. (2006). Heterocycles, 68, 47–58.Petricek, V., Dusek, M. & Palatinus, L. (2006). JANA2006 Institute of Physics, Praha, Czech Republic.Rao, K. V., Donia, M. S., Peng, J. N., Garcia-Palomero, E., Alonso, D., Martinez, A., Medina, M., Franzblau, S. G., Tekwani, B. L., Khan, S. I., Wahyuono, S., Willett, K. L. & Hamann, M. T. (2006). J. Nat. Prod. 69, 1034–1040.Sheldrick, G. M. (2008). SADABS University of Göttingen, Germany.Spek, A. L. (2009). Acta Cryst. D65, 148–155.Sun, H., Liu, L., Lu, J. F., Bai, L. C., Li, X. Q., Nikolovska-Coleska, Z., McEachern, D., Yang, C. Y., Qiu, S., Yi, H., Sun, D. X. & Wang, S. M. (2011). J. Med. Chem. 54, 3306–3318.Sweeney, J. B. (2009). Chem. Soc. Rev. 38, 1027–1038.Wang, T.-J., Fang, H., Cheng, F., Tang, G. & Zhao, Y.-F. (2006). Acta Cryst. E62, o5784–o5785.Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295.Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.Yap, W.-S., Gan, C.-Y., Low, Y.-Y., Choo, Y.-M., Etoh, T., Hayashi, M., Komiyama, K. & Kam, T.-S. (2011). J. Nat. Prod. 74, 1309–1312.Zhang, Y. & Wang, J. (2010). Coord. Chem. Rev. 254, 941–953.
Hydrogen-bond geometry (Å, °)
D—H⋯A D—HH⋯A DA D—H⋯A
O1—H1o⋯O2i 0.81 (2)2.02 (2)2.8259 (19)174 (2)

Symmetry code: (i) .