Acta Crystallogr Sect E Struct Rep OnlineActa Crystallogr Sect E Struct Rep OnlineActa Cryst. EActa Crystallographica Section E: Structure Reports Online1600-5368International Union of Crystallography225897633343789rk233210.1107/S1600536812005429ACSEBHS1600536812005429Metal-Organic Papers catena-Poly[[diaqua­bis(1H-imidazole-κN 3)cobalt(II)]-μ-2,3,5,6-tetra­chloro­tereph­thal­ato-κ2 O 1:O 4][Co(C8Cl4O4)(C3H4N2)2(H2O)2]ZhengChang-Gea*ZhangPengaLiPingaZhangPei-PeiaSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People’s Republic of ChinaCorrespondence e-mail: cgzheng@jiangnan.edu.cn01420120332012033201268Pt 4e120400m368m36812120120722012© Zheng et al. 20122012This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.A full version of this article is available from Crystallography Journals Online.

In the title compound, [Co(C8Cl4O4)(C3H4N2)2(H2O)2]n, the CoII ion displays a distorted octa­hedral coordination geometry with two O atoms from two monodentate tetra­chloro­terephthalate dianions, two N atoms from two imidazole mol­ecules and two O atoms from two water mol­ecules. The CoII ions are connected via the tetra­chloro­terephthalate dianions into a chain running along the crystallographic [110] direction. Adjacent chains are linked into a two-dimensional network arranged parallel to (010) by classical N—H⋯O and O—H⋯O hydrogen bonds.

Related literature  

For magnetism, gas storage and electrooptic properties, see: Kumar et al. (2009); Farha et al. (2009); Zhou et al. (2006); Mulder et al. (2005); Zhang et al. (2007). For the geometric parameters of related compounds, see: Murugavel et al. (2002); Rogan et al. (2006); Tong et al. (2002); Zhang & Lu (2004).

Experimental   <sec id="sec2.1.1"><title>Crystal data  

[Co(C8Cl4O4)(C3H4N2)2(H2O)2]

M r = 533.01

Monoclinic,

a = 18.646 (4) Å

b = 12.068 (2) Å

c = 10.741 (2) Å

β = 120.76 (3)°

V = 2076.9 (9) Å3

Z = 4

Mo Kα radiation

μ = 1.38 mm−1

T = 295 K

0.58 × 0.52 × 0.31 mm

Data collection  

Bruker SMART APEXII CCD diffractometer

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.677, T max = 1.000

6189 measured reflections

2342 independent reflections

1959 reflections with I > 2σ(I)

R int = 0.022

Refinement  

R[F 2 > 2σ(F 2)] = 0.032

wR(F 2) = 0.078

S = 1.06

2342 reflections

133 parameters

H-atom parameters constrained

Δρmax = 0.27 e Å−3

Δρmin = −0.29 e Å−3

<p>Data collection: <italic>APEX2</italic> (Bruker, 2005<xref ref-type="bibr" rid="bb1"> ▶</xref>); cell refinement: <italic>SAINT</italic> (Bruker, 2005<xref ref-type="bibr" rid="bb1"> ▶</xref>); data reduction: <italic>SAINT</italic>; program(s) used to solve structure: <italic>SHELXS97</italic> (Sheldrick, 2008<xref ref-type="bibr" rid="bb8"> ▶</xref>); program(s) used to refine structure: <italic>SHELXL97</italic> (Sheldrick, 2008<xref ref-type="bibr" rid="bb8"> ▶</xref>); molecular graphics: <italic>PLATON</italic> (Spek, 2009<xref ref-type="bibr" rid="bb9"> ▶</xref>); software used to prepare material for publication: <italic>SHELXL97</italic>.</p></sec></sec><sec sec-type="supplementary-material"><title>Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812005429/rk2332sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812005429/rk2332Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2332).

This work was supported by the Center of Analysis and Testing of Jiangnan University and the Research Institute of Elemento–Organic Chemistry of Suzhou University.

supplementary crystallographic information Comment

The design and synthesis of coordination polymers has attracted great interest in functional solid–state materials, owing to their excellent properties in magnetism, gas storage and electrooptic materials (Kumar et al., 2009; Farha et al., 2009; Zhou et al., 2006). Herein, compared with 1,4–benzenedicarboxylic acid, tetrachloroterephthalic acid can be used to construct materials which have different properties. Computational study suggests that 1,4–benzenedicarboxylic acid with chemical modification have better adsorption property in gas storage (Mulder et al., 2005; Zhang et al., 2007).

Single–crystal X–ray structural analysis reveals that the title cobalt(II) complex in crystal built from one–dimensional linear chains running along the crystallographic direction [1 1 0]. As shown in Fig. 1, the coordination geometry around the Co(II) atom is a slightly distorted octahedron with N2O4 binding set. In the octahedron unit, two O atoms from the tetrachloroterephthalate dianions ligands and two N atoms from the imidazole molecules form the equatorial plane and the axial position is occupied by O atoms from two water molecules. The Co—O bond lengths are 2.1653 (14)Å and 2.0865 (14)Å and agree well with the reported (Murugavel et al., 2002; Rogan et al., 2006). The Co—N bond length are 2.0896 (17)Å, which are comparable with the reported values in the similar complexes (Tong et al., 2002; Zhang & Lu, 2004). In addition, the imidazole and water molecules act as donors in N—H···O and O—H···O hydrogen bonds (Table 1). Adjacent one–dimensional chains are linked into a two–dimensional network arranged along the crystallographic b axis by classical N2—H2B···O2iii and O3—H3A···O1i hydrogen bonds with the angles of 167° and 166°, respectivly. Symmetry codes: (i) -x+1, y, -z+1/2; (iii) -x+1/2, y+1/2, -z+1/2.

Experimental

All the reagents and solvents employed were commercially available. Tetrachloroterephthalic acid was purified by recrystallization. In a 15 cm long tube, a solution of sodium tetrachloroterephthalate (0.0346 g, 0.1 mmol) and imidazol (0.0068 g, 0.1 mmol) in 5 mL methanol was carefully layered on top of a bilayer solution comprised of a solution of Co(NO3)2×6H2O (0.0291 g, 0.10 mmol) in 5 mL water on the bottom and a buffer solvent of 6 mL ethyl acetate on the top at room temperature. Half a month later, pink block–shaped crystals were obtained, washed with water, and dried on air (0.0618 g, yield: 58% based on Co). Elemental analysis(%) calcd. for C14H12Cl4CoN4O6: C, 31.52; H, 2.25; N, 10.51. Found: C, 31.37; H, 2.24; N, 10.47%.

Refinement

All the other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H, O—H and N—H distances of 0.93Å, 0.85Å and 0.86Å with Uiso(H) = 1.2(1.5)Ueq(C, O, N). All C—Cl bond lengths were restrained to 1.728–1.729 (2)Å.

Figures

ORTEP plot of a fragment of the title compound (with the atom numbering scheme) showing the coordination environment of Co1 atom and the one–dimensional polymeric structure. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) 1-x, y, 1/2-z; (ii) 1-x, 1-y, 1-z; (iii) 1/2-x, 1/2+y, 1/2-z.

Crystal data
[Co(C8Cl4O4)(C3H4N2)2(H2O)2]Z = 4
Mr = 533.01F(000) = 1068
Monoclinic, C2/cDx = 1.705 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 18.646 (4) ŵ = 1.38 mm1
b = 12.068 (2) ÅT = 295 K
c = 10.741 (2) ÅBlock, pink
β = 120.76 (3)°0.58 × 0.52 × 0.31 mm
V = 2076.9 (9) Å3
Data collection
Bruker SMART APEXII CCD diffractometer2342 independent reflections
Radiation source: fine-focus sealed tube1959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −18→24
Tmin = 0.677, Tmax = 1.000k = −12→15
6189 measured reflectionsl = −13→11
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.041P)2 + 0.2172P] where P = (Fo2 + 2Fc2)/3
2342 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.29 e Å3
Special details
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å<sup>2</sup>)
xyzUiso*/Ueq
Co10.50000.50000.50000.01850 (11)
Cl10.40036 (3)0.13509 (5)0.26222 (6)0.04701 (19)
Cl20.29749 (4)0.00958 (5)−0.03453 (6)0.04412 (17)
O10.40828 (7)0.41632 (11)0.30419 (12)0.0236 (3)
O20.31637 (9)0.35243 (14)0.36131 (15)0.0414 (4)
O30.58228 (8)0.50886 (12)0.42281 (15)0.0323 (4)
H3A0.57840.48770.34410.048*
H3B0.61510.56420.45200.048*
N10.44543 (10)0.65072 (14)0.40112 (17)0.0268 (4)
C10.34446 (11)0.36395 (17)0.27926 (18)0.0229 (4)
C20.29635 (11)0.30562 (17)0.13275 (19)0.0234 (4)
C30.31676 (11)0.19887 (17)0.11602 (19)0.0263 (4)
C40.27131 (11)0.14324 (17)−0.0150 (2)0.0251 (4)
C50.48095 (13)0.7461 (2)0.3896 (3)0.0399 (6)
H5A0.53800.75750.43020.048*
C60.42110 (16)0.8213 (2)0.3105 (3)0.0496 (6)
H6A0.42890.89290.28730.060*
N20.34743 (11)0.77162 (18)0.27174 (19)0.0414 (5)
H2B0.29860.80040.22020.050*
C80.36442 (13)0.6702 (2)0.3279 (2)0.0365 (5)
H8A0.32420.61930.31700.044*
Atomic displacement parameters (Å<sup>2</sup>)
U11U22U33U12U13U23
Co10.01555 (17)0.0220 (2)0.01592 (18)−0.00026 (13)0.00661 (14)−0.00168 (13)
Cl10.0432 (3)0.0393 (4)0.0280 (3)0.0089 (3)−0.0038 (2)−0.0019 (2)
Cl20.0459 (3)0.0311 (3)0.0362 (3)0.0067 (2)0.0072 (3)−0.0097 (2)
O10.0224 (6)0.0281 (8)0.0176 (6)−0.0059 (5)0.0083 (5)−0.0036 (5)
O20.0381 (8)0.0619 (12)0.0288 (7)−0.0277 (8)0.0205 (7)−0.0187 (7)
O30.0289 (7)0.0455 (10)0.0293 (7)−0.0142 (6)0.0197 (6)−0.0163 (6)
N10.0234 (8)0.0259 (10)0.0250 (8)0.0028 (7)0.0080 (7)−0.0005 (7)
C10.0210 (9)0.0259 (11)0.0168 (8)−0.0047 (7)0.0061 (7)−0.0045 (8)
C20.0218 (9)0.0279 (12)0.0198 (9)−0.0065 (8)0.0100 (7)−0.0037 (8)
C30.0218 (9)0.0300 (12)0.0197 (9)−0.0023 (8)0.0052 (7)0.0000 (8)
C40.0258 (9)0.0213 (11)0.0250 (9)−0.0028 (8)0.0108 (8)−0.0048 (8)
C50.0316 (11)0.0337 (14)0.0441 (13)0.0009 (10)0.0118 (10)0.0090 (11)
C60.0520 (15)0.0357 (15)0.0581 (16)0.0068 (12)0.0260 (13)0.0156 (12)
N20.0379 (10)0.0451 (13)0.0390 (10)0.0214 (9)0.0179 (9)0.0111 (9)
C80.0286 (10)0.0378 (14)0.0400 (12)0.0074 (9)0.0153 (10)0.0035 (10)
Geometric parameters (Å, º)
Co1—O32.0865 (14)N1—C51.365 (3)
Co1—O3i2.0865 (14)C1—C21.527 (2)
Co1—N12.0896 (17)C2—C31.381 (3)
Co1—N1i2.0896 (17)C2—C4ii1.393 (3)
Co1—O12.1653 (14)C3—C41.389 (3)
Co1—O1i2.1653 (14)C4—C2ii1.393 (3)
Cl1—C31.728 (2)C5—C61.350 (3)
Cl2—C41.729 (2)C5—H5A0.9300
O1—C11.250 (2)C6—N21.355 (3)
O2—C11.242 (2)C6—H6A0.9300
O3—H3A0.8500N2—C81.329 (3)
O3—H3B0.8500N2—H2B0.8600
N1—C81.319 (3)C8—H8A0.9300
O3—Co1—O3i180.0O2—C1—C2116.16 (16)
O3—Co1—N191.11 (6)O1—C1—C2116.56 (16)
O3i—Co1—N188.89 (6)C3—C2—C4ii118.49 (17)
O3—Co1—N1i88.89 (6)C3—C2—C1120.55 (16)
O3i—Co1—N1i91.11 (6)C4ii—C2—C1120.89 (18)
N1—Co1—N1i180.0C2—C3—C4121.12 (17)
O3—Co1—O190.80 (5)C2—C3—Cl1118.56 (14)
O3i—Co1—O189.20 (5)C4—C3—Cl1120.32 (16)
N1—Co1—O188.56 (6)C3—C4—C2ii120.39 (18)
N1i—Co1—O191.44 (6)C3—C4—Cl2120.67 (15)
O3—Co1—O1i89.20 (5)C2ii—C4—Cl2118.94 (14)
O3i—Co1—O1i90.80 (5)C6—C5—N1109.9 (2)
N1—Co1—O1i91.44 (6)C6—C5—H5A125.0
N1i—Co1—O1i88.56 (6)N1—C5—H5A125.0
O1—Co1—O1i180.0C5—C6—N2106.1 (2)
C1—O1—Co1129.54 (11)C5—C6—H6A126.9
Co1—O3—H3A132.4N2—C6—H6A126.9
Co1—O3—H3B115.5C8—N2—C6107.42 (19)
H3A—O3—H3B106.4C8—N2—H2B126.3
C8—N1—C5104.86 (19)C6—N2—H2B126.3
C8—N1—Co1124.72 (16)N1—C8—N2111.7 (2)
C5—N1—Co1130.35 (14)N1—C8—H8A124.2
O2—C1—O1127.27 (16)N2—C8—H8A124.2
O3—Co1—O1—C1165.06 (16)O1—C1—C2—C4ii−94.6 (2)
O3i—Co1—O1—C1−14.94 (16)C4ii—C2—C3—C40.1 (3)
N1—Co1—O1—C1−103.85 (17)C1—C2—C3—C4177.30 (18)
N1i—Co1—O1—C176.15 (17)C4ii—C2—C3—Cl1−179.71 (14)
O3—Co1—N1—C8136.25 (17)C1—C2—C3—Cl1−2.5 (3)
O3i—Co1—N1—C8−43.75 (17)C2—C3—C4—C2ii−0.1 (3)
O1—Co1—N1—C845.49 (17)Cl1—C3—C4—C2ii179.71 (15)
O1i—Co1—N1—C8−134.51 (17)C2—C3—C4—Cl2−179.99 (15)
O3—Co1—N1—C5−40.3 (2)Cl1—C3—C4—Cl2−0.1 (3)
O3i—Co1—N1—C5139.7 (2)C8—N1—C5—C60.2 (3)
O1—Co1—N1—C5−131.0 (2)Co1—N1—C5—C6177.28 (17)
O1i—Co1—N1—C549.0 (2)N1—C5—C6—N2−0.4 (3)
Co1—O1—C1—O23.9 (3)C5—C6—N2—C80.4 (3)
Co1—O1—C1—C2−174.82 (12)C5—N1—C8—N20.0 (3)
O2—C1—C2—C3−90.6 (2)Co1—N1—C8—N2−177.26 (14)
O1—C1—C2—C388.3 (2)C6—N2—C8—N1−0.2 (3)
O2—C1—C2—C4ii86.5 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, −y+1/2, −z.

Hydrogen-bond geometry (Å, º)
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1iii0.851.942.7681 (19)166
O3—H3B···O2i0.852.012.696 (2)137
N2—H2B···O2iv0.861.962.803 (2)167

Symmetry codes: (i) −x+1, −y+1, −z+1; (iii) −x+1, y, −z+1/2; (iv) −x+1/2, y+1/2, −z+1/2.

ReferencesBruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.Farha, O. K., Spokoyny, A. Y. M., Mulfort, K. L., Galli, S., Hupp, J. T. & Mirkin, C. A. (2009). Small, 5, 1727–1731.Kumar, A., Mayer–Figge, H., Sheldrick, W. S. & Singh, N. (2009). Eur. J. Inorg. Chem. pp. 2720–2725.Mulder, F. M., Dingemans, T. J., Wagemake, M. & Kearley, G. J. (2005). Chem. Phys. 317, 113–118.Murugavel, R., Krishnamurthy, D. & Sathiyendiran, M. (2002). J. Chem. Soc. Dalton Trans. pp. 34–39.Rogan, J., Poleti, D. & Karanović, L. (2006). Z. Anorg. Allg. Chem. 632, 133–139.Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.Spek, A. L. (2009). Acta Cryst. D65, 148–155.Tong, M.-L., Li, W., Chen, X.-M. & Ng, S. W. (2002). Acta Cryst. E58, m186–m188.Zhang, Q.-Z. & Lu, C.-Z. (2004). Acta Cryst. E60, m1289–m1290.Zhang, L., Wang, Q. & Liu, Y. C. (2007). J. Phys. Chem. B, 111, 4291–4295.Zhou, Y. F., Hong, M. C. & Wu, X. T. (2006). Chem. Commun. pp. 135–143.
Hydrogen-bond geometry (Å, °)
D—H⋯AD—HH⋯ADAD—H⋯A
O3—H3A⋯O1i0.851.942.7681 (19)166
O3—H3B⋯O2ii0.852.012.696 (2)137
N2—H2B⋯O2iii0.861.962.803 (2)167

Symmetry codes: (i) ; (ii) ; (iii) .