Acta Crystallogr Sect E Struct Rep OnlineActa Cryst. EActa Crystallographica Section E: Structure Reports Online1600-5368International Union of Crystallography218368323151894aa201410.1107/S1600536811024792ACSEBHS1600536811024792Metal-Organic PapersBis(2-propyl-1H-imidazol-3-ium) bis­(pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)cadmate(II)(C6H11N2)2[Cd(C7H3NO4)2]DongGui-Yinga*LiuTong-FeiaHeCui-HongaDengXiao-ChenbShiXiao-GebCollege of Chemical Engineering, Hebei United University, Tangshan 063009, People’s Republic of ChinaQian’an College, Hebei United University, Tangshan 063009, People’s Republic of ChinaCorrespondence e-mail: tsdgying@126.com01720113062011306201167Pt 7e110700m1007m100706620112362011© Dong et al. 20112011This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.A full version of this article is available from Crystallography Journals Online.

The title salt, (C6H11N2)2[Cd(C7H3NO4)2], displays a discrete mononuclear structure, in which the central CdII atom is six-coordinated in a distorted octa­hedral coordination geometry by two N and four O atoms from two different pyridine-2,6-dicarboxyl­ate anions in an O 2,N,O 6-tridentate chelation mode. The crystal packing is stabilized by N—H⋯O hydrogen bonds and π–π inter­actions [centroid–centroid distance = 3.576 (5) Å].

Related literature

For background to and the biological activity of pyridine-2,6-dicarb­oxy­lic acid, see: Hay et al. (2003). For related complexes, see: Dong et al. (2006); Guerriero et al. (1987); Kjell et al. (1993); Abboud et al. (1998).

Experimental<sec id="sec2.1.1"><title>Crystal data

(C6H11N2)2[Cd(C7H3NO4)2]

M r = 664.95

Monoclinic,

a = 19.928 (4) Å

b = 9.5038 (19) Å

c = 15.073 (3) Å

β = 109.90 (3)°

V = 2684.2 (11) Å3

Z = 4

Mo Kα radiation

μ = 0.88 mm−1

T = 295 K

0.22 × 0.12 × 0.08 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.796, T max = 0.808

11223 measured reflections

2364 independent reflections

2238 reflections with I > 2σ(I)

R int = 0.034

Refinement

R[F 2 > 2σ(F 2)] = 0.031

wR(F 2) = 0.065

S = 1.19

2364 reflections

186 parameters

H-atom parameters constrained

Δρmax = 0.26 e Å−3

Δρmin = −0.46 e Å−3

<p>Data collection: <italic>SMART</italic> (Bruker, 1998<xref ref-type="bibr" rid="bb2"> ▶</xref>); cell refinement: <italic>SAINT</italic> (Bruker, 1998<xref ref-type="bibr" rid="bb2"> ▶</xref>); data reduction: <italic>SAINT</italic>; program(s) used to solve structure: <italic>SHELXS97</italic> (Sheldrick, 2008<xref ref-type="bibr" rid="bb8"> ▶</xref>); program(s) used to refine structure: <italic>SHELXL97</italic> (Sheldrick, 2008<xref ref-type="bibr" rid="bb8"> ▶</xref>); molecular graphics: <italic>SHELXTL</italic> (Sheldrick, 2008<xref ref-type="bibr" rid="bb8"> ▶</xref>); software used to prepare material for publication: <italic>SHELXTL</italic>.</p></sec></sec><sec sec-type="supplementary-material"><title>Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811024792/aa2014sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811024792/aa2014Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2014).

The authors thank Hebei United University for supporting this work.

supplementary crystallographic information Comment

The pyridine-2,6-dicarboxylic (dipicolinic) acid is now recognized to be a major component of bacterial spores, which is used in a variety of processes as an enzyme inhibitor, plant preservative and food sanitizer (Hay et al. 2003). Pyridine-2,6-dicarboxylate has proved to be a versatile ligand with N,O-chelation and adopts diverse coordination modes (Guerriero et al., 1987; Kjell et al., 1993; Abboud et al., 1998; Dong et al.,2006). Recent efforts of our laboratory to synthesize coordination polymers with pyridine-2,6-dicarboxylic acid and 2-propylimidazole with transition metals resulted in the synthesis of the title complex (I).

In the title compound, the CdII is octahedrally coordinated by two tridentate dipicolinate ligands via their O and N atoms. In the crystal structure, adjacent molecules are linked via strong N—H···O hydrogen bonds into chains parallel to the b axis, see Fig. 2. Also there are π-π interactions between the centroids of adjacent pyridine rings. For Cg1 (the centroid of ring N1,C1—C5) and Cg1a (ring N1a,C1a—C5a) [symmetry code (a):-x,-y,-z + 1), the centroid–centroid distance is 3.576 (5)Å and the dihedral angle is 12.43 (3)°, this may further stabilize the structure.

Experimental

A mixture of cadmium(II) nitrate tetrahydrate (308.49 mg, 1 mmol) was added to a slightly basic (pH > 8) solution of pyridine-2,6-dicarboxylic acid (334 mg, 2 mmol), followed by the addition of 2-propylimidazole (440 mg, 4 mmol) with stirring. The reaction mixture was filtered and the filtrate was allowed to stay at room temperature. Colourless prism-shaped crystals were obtained after one week (yield: 0.132 g, 20%). Analysis for C26H28CdN6O8 (%): calculated C 46.96, H 4.24,N 12.64; found C 46.85, H 4.13 N 12.57.

Refinement

H atoms were placed in calculated positions, with N—H = 0.86 Å; C—H = 0.97 Å for methyl H-atoms and C—H = 0.93 Å for other H-atoms and refined in a riding model with Uiso(H) = 1.5Ueq(C) for methyl H-atoms and Uiso(H) = 1.2Ueq(C, N) for other atoms.

Figures

Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level. Symmetry code: (i) -x, y, 0.5 - z.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines and H atoms not involved in hydrogen bonding are omitted.

Crystal data
(C6H11N2)2[Cd(C7H3NO4)2]F(000) = 1352
Mr = 664.95Dx = 1.645 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5638 reflections
a = 19.928 (4) Åθ = 22.4–4.6°
b = 9.5038 (19) ŵ = 0.88 mm1
c = 15.073 (3) ÅT = 295 K
β = 109.90 (3)°Prism, colourless
V = 2684.2 (11) Å30.22 × 0.12 × 0.08 mm
Z = 4
Data collection
Bruker SMART CCD area-detector diffractometer2364 independent reflections
Radiation source: fine–focus sealed tube2238 reflections with I > 2σ(I)
graphiteRint = 0.034
φ and ω scansθmax = 25.0°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −23→23
Tmin = 0.796, Tmax = 0.808k = −11→11
11223 measured reflectionsl = −17→17
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.19w = 1/[σ2(Fo2) + (0.0218P)2 + 4.3339P] where P = (Fo2 + 2Fc2)/3
2364 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.46 e Å3
Special details
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å<sup>2</sup>)
xyzUiso*/Ueq
Cd10.00000.07339 (3)0.25000.03025 (11)
O10.09384 (11)−0.0821 (2)0.31049 (13)0.0428 (5)
C70.13072 (14)−0.0697 (3)0.39623 (19)0.0301 (6)
N10.04450 (10)0.0993 (2)0.40666 (14)0.0221 (5)
O3−0.06932 (10)0.2362 (2)0.29862 (13)0.0400 (5)
O20.18879 (10)−0.1286 (2)0.43686 (14)0.0413 (5)
O4−0.07871 (12)0.3529 (3)0.42064 (15)0.0513 (6)
C6−0.05008 (14)0.2656 (3)0.3843 (2)0.0309 (6)
C50.10172 (13)0.0254 (3)0.45517 (17)0.0228 (5)
C10.01417 (13)0.1878 (3)0.44944 (18)0.0243 (6)
C40.13092 (14)0.0374 (3)0.55192 (18)0.0298 (6)
H4A0.1713−0.01390.58560.036*
C30.09920 (15)0.1269 (3)0.59761 (18)0.0349 (7)
H3A0.11730.13490.66300.042*
C20.04064 (14)0.2043 (3)0.54622 (18)0.0321 (6)
H2A0.01930.26670.57600.039*
N30.33043 (12)0.0315 (2)0.29967 (17)0.0340 (6)
H3B0.3571−0.03110.33600.041*
C90.24342 (15)0.1779 (3)0.2381 (2)0.0357 (7)
H9A0.20190.23070.22540.043*
N20.29048 (11)0.1827 (2)0.18995 (16)0.0313 (5)
H2B0.28660.23570.14220.038*
C100.26839 (15)0.0829 (3)0.3068 (2)0.0379 (7)
H10A0.24760.05690.35110.045*
C80.34294 (14)0.0927 (3)0.2285 (2)0.0316 (6)
C110.40311 (17)0.0637 (4)0.1952 (3)0.0531 (9)
H11A0.4345−0.00510.23650.064*
H11B0.43030.14950.19860.064*
C120.3781 (3)0.0082 (5)0.0936 (3)0.0786 (14)
H12A0.35080.08110.05170.094*
H12B0.4196−0.01180.07600.094*
C130.3335 (2)−0.1215 (5)0.0797 (3)0.0729 (13)
H13A0.3195−0.15050.01490.109*
H13B0.2917−0.10210.09560.109*
H13C0.3605−0.19510.11950.109*
Atomic displacement parameters (Å<sup>2</sup>)
U11U22U33U12U13U23
Cd10.03459 (18)0.03409 (18)0.01739 (15)0.0000.00275 (11)0.000
O10.0528 (13)0.0463 (12)0.0258 (11)0.0206 (11)0.0090 (9)−0.0040 (9)
C70.0329 (15)0.0278 (14)0.0306 (15)0.0010 (13)0.0123 (12)0.0042 (12)
N10.0216 (11)0.0243 (12)0.0198 (11)−0.0003 (9)0.0062 (9)0.0008 (9)
O30.0346 (11)0.0486 (13)0.0298 (11)0.0154 (10)0.0019 (9)0.0016 (9)
O20.0328 (11)0.0433 (12)0.0431 (12)0.0159 (10)0.0071 (9)−0.0023 (10)
O40.0512 (14)0.0585 (15)0.0436 (13)0.0309 (12)0.0154 (11)−0.0012 (11)
C60.0260 (14)0.0309 (15)0.0352 (16)0.0036 (12)0.0095 (12)0.0034 (13)
C50.0215 (13)0.0229 (13)0.0233 (13)−0.0009 (10)0.0066 (10)0.0028 (10)
C10.0243 (13)0.0244 (13)0.0255 (13)0.0000 (11)0.0101 (11)−0.0002 (11)
C40.0261 (14)0.0337 (16)0.0245 (14)0.0010 (12)0.0021 (11)0.0051 (12)
C30.0371 (16)0.0478 (18)0.0173 (13)−0.0029 (14)0.0062 (12)−0.0017 (12)
C20.0349 (16)0.0370 (17)0.0268 (14)−0.0008 (13)0.0136 (12)−0.0059 (12)
N30.0331 (13)0.0281 (13)0.0395 (14)0.0027 (10)0.0107 (11)0.0019 (11)
C90.0265 (14)0.0336 (16)0.0462 (18)0.0023 (12)0.0112 (13)−0.0047 (14)
N20.0296 (12)0.0268 (12)0.0373 (13)−0.0007 (10)0.0114 (10)0.0020 (10)
C100.0362 (16)0.0394 (17)0.0421 (17)−0.0022 (14)0.0186 (13)−0.0046 (15)
C80.0252 (14)0.0254 (15)0.0439 (17)−0.0039 (12)0.0115 (12)−0.0034 (13)
C110.0419 (18)0.0431 (19)0.087 (3)0.0057 (16)0.0383 (19)0.0133 (19)
C120.111 (4)0.076 (3)0.081 (3)0.046 (3)0.075 (3)0.034 (2)
C130.092 (3)0.076 (3)0.048 (2)0.037 (3)0.021 (2)−0.006 (2)
Geometric parameters (Å, °)
Cd1—N12.235 (2)C2—H2A0.9300
Cd1—N1i2.235 (2)N3—C81.316 (4)
Cd1—O12.313 (2)N3—C101.368 (4)
Cd1—O1i2.313 (2)N3—H3B0.8600
Cd1—O3i2.351 (2)C9—C101.336 (4)
Cd1—O32.351 (2)C9—N21.368 (4)
O1—C71.256 (3)C9—H9A0.9300
C7—O21.243 (3)N2—C81.323 (3)
C7—C51.513 (4)N2—H2B0.8600
N1—C11.324 (3)C10—H10A0.9300
N1—C51.326 (3)C8—C111.475 (4)
O3—C61.247 (3)C11—C121.534 (6)
O4—C61.236 (3)C11—H11A0.9700
C6—C11.515 (4)C11—H11B0.9700
C5—C41.379 (4)C12—C131.492 (6)
C1—C21.381 (4)C12—H12A0.9700
C4—C31.376 (4)C12—H12B0.9700
C4—H4A0.9300C13—H13A0.9600
C3—C21.374 (4)C13—H13B0.9600
C3—H3A0.9300C13—H13C0.9600
N1—Cd1—N1i167.37 (11)C2—C3—H3A120.2
N1—Cd1—O171.16 (7)C3—C2—C1118.7 (3)
N1i—Cd1—O1117.61 (7)C3—C2—H2A120.6
N1—Cd1—O1i117.61 (7)C1—C2—H2A120.6
N1i—Cd1—O1i71.16 (7)C8—N3—C10109.5 (2)
O1—Cd1—O1i100.59 (11)C8—N3—H3B125.3
N1—Cd1—O3i101.12 (7)C10—N3—H3B125.3
N1i—Cd1—O3i70.27 (7)C10—C9—N2107.0 (3)
O1—Cd1—O3i93.52 (8)C10—C9—H9A126.5
O1i—Cd1—O3i141.21 (7)N2—C9—H9A126.5
N1—Cd1—O370.27 (7)C8—N2—C9109.1 (2)
N1i—Cd1—O3101.12 (7)C8—N2—H2B125.5
O1—Cd1—O3141.21 (7)C9—N2—H2B125.5
O1i—Cd1—O393.52 (8)C9—C10—N3106.7 (3)
O3i—Cd1—O397.69 (11)C9—C10—H10A126.6
C7—O1—Cd1117.19 (17)N3—C10—H10A126.6
O2—C7—O1125.8 (3)N3—C8—N2107.7 (2)
O2—C7—C5117.2 (2)N3—C8—C11126.6 (3)
O1—C7—C5117.0 (2)N2—C8—C11125.7 (3)
C1—N1—C5121.1 (2)C8—C11—C12112.3 (3)
C1—N1—Cd1120.09 (16)C8—C11—H11A109.2
C5—N1—Cd1118.80 (16)C12—C11—H11A109.2
C6—O3—Cd1117.65 (17)C8—C11—H11B109.2
O4—C6—O3125.7 (3)C12—C11—H11B109.2
O4—C6—C1117.2 (2)H11A—C11—H11B107.9
O3—C6—C1117.1 (2)C13—C12—C11113.6 (3)
N1—C5—C4120.9 (2)C13—C12—H12A108.9
N1—C5—C7114.9 (2)C11—C12—H12A108.9
C4—C5—C7124.2 (2)C13—C12—H12B108.9
N1—C1—C2120.9 (2)C11—C12—H12B108.9
N1—C1—C6114.8 (2)H12A—C12—H12B107.7
C2—C1—C6124.3 (2)C12—C13—H13A109.5
C3—C4—C5118.7 (2)C12—C13—H13B109.5
C3—C4—H4A120.7H13A—C13—H13B109.5
C5—C4—H4A120.7C12—C13—H13C109.5
C4—C3—C2119.7 (2)H13A—C13—H13C109.5
C4—C3—H3A120.2H13B—C13—H13C109.5

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2ii0.861.932.753 (3)160
N3—H3B···O4iii0.861.842.690 (3)173

Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2; (iii) x+1/2, y−1/2, z.

ReferencesAbboud, K. A., Xu, C. & Drago, R. S. (1998). Acta Cryst. C54, 1270–1273.Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.Dong, G.-Y., Cui, G.-H. & Wang, S.-C. (2006). Acta Cryst. E62, m606–m607.Guerriero, P., Casellato, U., Sitran, S., Vigato, P. A. & Graziani, R. (1987). Inorg. Chim. Acta, 133, 337–345.Hay, M. P., Anderson, R. F., Ferry, D. M., Wilson, W. R. & Denny, W. A. (2003). J. Med. Chem. 46, 5533–5545.Kjell, H., Martin, L., Goran, S. & Jorgen, A. (1993). Acta Chem. Scand. 47, 449–455.Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Hydrogen-bond geometry (Å, °)
D—H⋯AD—HH⋯ADAD—H⋯A
N2—H2B⋯O2i0.861.932.753 (3)160
N3—H3B⋯O4ii0.861.842.690 (3)173

Symmetry codes: (i) ; (ii) .