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Abstract

ApplicativeDo tries to remove the monad binds where possible when desugaring
Haskells” do-notation. It does this by looking at inter-statement dependencies and
connecting them with applicative operations when possible; this introduces implicit
parallelism in the code. Deciding which structure to generate is tricky, since many
different are usually possible. Currently, this is solved with simple minimum cost
analysis with an unit cost model, assuming each statement takes the same amount of
time to evaluate. By extending the cost model inside the ApplicativeDo algorithm
for variable evaluation costs, we perform smarter generation of code by prioritising
parallelisation of heavy statements.

At Facebook, Marlow et al. developed Hax1, a data-fetching library that can use
applicative structure in expressions for free parallelism. To our knowledge, it is
the only library that can do automatic parallelism on applicative expressions. We
observe significant wall-clock speedups in many cases when running benchmarks with
Hax1l, compared to the original ApplicativeDo-desugared programs, given relative
costs of statements.

The ApplicativeDo extension is agnostic to the source of costs, but one way of pro-
viding them is investigated as optional weight annotations on do-statements. This
works well when the relative costs are known, but this kind of run-time estimation
is notoriously difficult, particularly in Haskell. We suggest different directions for
future work relating to sources of costs.

Keywords: Computer science, engineering, MSc thesis, functional programming,
Haskell, inferred parallelism, Haxl, ApplicativeDo.






Acknowledgements

We want to extend our most sincere thanks to Mary Sheeran; she has been a won-
derful supervisor with just the right mix of positivity and scepticism. Without her,
we would have half as many examples and twice the work to do in the last weeks.

It has been a luxury to have Simon Marlow as an advisor; while being a very busy
individual he still took the time to give us guidance and advice, both over email and
personal meetings. We want to thank him for this and the splendid work on both
ApplicativeDo and Haxl, as well as GHC and Haskell in general.

Thanks also to our examiner Carlo A. Furia for allotting us time, as well as asking
interesting questions and motivating us at the half-time and final presentations.

We are also grateful for the support we have gotten from mPowered Solutions, with
Emil Axelsson in particular. Looking at your production Haxl code was insightful
and much appreciated, even though it did not happen to mesh well with our project.

Huge thanks to the GHC developers over at #ghc@freenode.net, they have helped
us figure out a great deal of terribly confusing details of the compiler internals. In
particular, Matthew Pickering gave us valuable insights on several occasions.

We also want to extend our gratitude to Matti Gissurarson for helping us initially
figure out the direction of this thesis, your experience and perspective gave us in-
spiration.

Thanks to Pierre Krafft for your interesting questions and comments in the role of
our opponent. Invaluable feedback!

Edvard Hiibinette and Fredrik Thune
Gothenburg, June 2018

vii






Contents

1 Introduction

2 Background

2.1 General knowledge of Haskell . . . . . ... ... ... ... ...
2.1.1 The Functor, Applicative and Monad abstractions . . . .
2.1.1.1 The Functorclass . . . .. .. ... .. .....

2.1.1.2 The Applicativeclass. . . . . . ... ... ...

2.1.1.3 TheMonadclass. . . ... ... ... ... ....

2.1.2  GHC language extensions . . . . . . ... ... ... ...

2.2 Flexible desugaring of do-notation . . . . . . .. ... ... ....
2.2.1 The ApplicativeDo algorithm . . . . . . .. ... ... ..
2.2.1.1 Rearrangement . . . .. .. ... ... ... ...

2.2.1.2 Desugaring . . . . . ... ...

2.3 Possible improvements to ApplicativeDo . . . . . ... ... ...
2.3.1 Flaws under variable evaluation time . . . . .. .. .. ..

2.4 The Haxl abstraction . . . . . . .. .. .. ... ... ...
241 Usageof Haxl . . . . . . . . .. ... ... ... ...

3 Contributions

3.1 Extended cost model for ApplicativeDo . . . . .. ... .. ...
3.1.1  Split optimisation shortcut . . . . . . ... ... ... ...

3.2  Evaluation method . . . . . .. ... ... ... 000
3.2.1 Analytic evaluation . . . . . .. ... ...
3.2.1.1 Evidence of optimality in improved algorithm . .

3.2.2  Evaluation using Haxl . . . .. ... .. ... ... ....
3.2.2.1 Pure computation as data fetches . . . . . . . ..

3.2.2.2 Limitations of Hax1 . . .. ... ... ... ...

3223 Hax120 ... .. ... .. ... ... ...

3.3 Weights for ApplicativeDo . . . . . . ... ... ... ......
3.3.1  Weights directly from the parser . . . . . . ... ... ...
3.3.1.1 Lexer and parser modifications . . . .. ... ..

3.3.2  Weights through ANN pragma . . . . .. .. .. ... ...
3.3.2.1 Implementation of the ANN pragma . . . . .. ..

3.3.2.2 Routing annotations to ApplicativeDo . . . . .

3.3.2.3 Looking up weights in ApplicativeDo . . . . . .

19
20
22
22
23
23
27
27
30
31
32
32
32
39
39
43
45

ix



Contents

3.4 Hackingon GHC . . . ... .. ... ... ... ... ... 48
3.5 Compiler plugins . . . . . . .. ... 48
4 Results 49
4.1 Contribution results . . . . . . .. ... oo 49
4.1.1 ApplicativeDo improvements . . . . . . . . . ... . ... 50
4.1.2 Costs from programmer annotations . . . . . .. ... .. 50
4.1.3 Parallelisation with Haxl . . . . . .. ... ... ... ... 50
4.1.4 Documentation of GHC research practicalities . . . . . . . o1
4.2 Systemdemo . . ... ... 51
4.3 Evaluation . . . . . . ... 52
4.3.1 Analytic evaluation . . . . . . . ... 52
4.3.1.1 Programone . ... . ... ... ........ 53
4.3.1.2 Programtwo . ... . ... ... ... ... .. 54
4.3.1.3  Effects of incorrect costs . . . . . . ... ... .. 55
4.3.2 Empirical evaluation . . . . ... ... ... Y
4.3.2.1  Tests for programone . . . . .. ... ... ... 57
4.3.2.2  Tests for program two . . . . .. ... ... ... 58
4.3.2.3  Tests for program three . . . .. ... ... ... 59
5 Related Work 61
5.1 Inferring typesize . . . . . . . ... Lo 61
5.2  Thunk-based implicit parallelism . . . . ... ... ... .. ... 61
5.3 Schemik: an implicitly parallel language . . . . .. ... ... .. 62
5.4 Data parallel languages . . . . . . . .. ... 63
6 Discussion and conclusion 65
6.1 Peculiar data points in evaluation . . . . . . . . .. ... ... .. 65
6.2 Weight annotations . . . . . .. .. ... ... L. 66
6.2.1 Using GHC profiling for weight insights . . . . . . . . . .. 67
6.3 When we see improvements . . . . . ... ... L. 67
6.4 Future work . . . . . . ... 68
6.4.1 Function weight inference . . . . . . ... ... ... ... 69
6.4.2 Type-based weight inference . . . . . . ... .. ... ... 69

6.4.3 Investigating interoperation with thunk-based automatic par-
allelism . . . . ..o 70
6.4.4 A more general library for executing implicit parallelism . 70
6.5 Conclusion . . . . . . . ... L Lo 70
Bibliography 73
A Haskell language extensions I
A1 ApplicativeDo . . . . . . . .. I
A.2 BangPatterns . . . . . . . . . . ... IT
A.3 FlexibleInstances . . . . . . . . . . . . II
A4 GADTS . . . . . o e 11
A5 MultiParamTypeClasSes . . . . . . . . v v v v v v v v o I11



Contents

A6 MultiWayIf . . . . . . .. .. IV
A7 OverloadedStrings . . . . . . . . .. . . ... ... v
A.8 StandaloneDeriving . . . . . . . . . . . ... ... ... \Y
A9 TypeFamilies . . . . . . . . . .. ... ... \Y

B Discovery of unexpected GHC behaviour VIII
The GHC compilation pipeline XI

D The GHC plugin system XII
D.1 Usage of compiler plugins . . . . .. ... ... ... . ..... XIIT
D.2 Extended plugins proposal . . . . . ... ... XIII
D.3 Development of the compiler plugin for annotations . . . . . . .. XV
D.3.1 Packaging and registration of the plugin . . . . .. .. .. XVI

D.3.2 Limitations in the extended plugins proposal . . . . . . . . XVII
Hacking on GHC XIX
E.1 Setup up a GHC fork with Git . . . . . . .. ... ... ... ... XIX
E.1.1 Working with Phabricator Differentials . . . . . . . .. .. XX

E.2 Building GHC . . . . . . .. ... XXI
E2.1 GHCstages . . . . . .. .. .. .. ... ... XXII

E.2.2 Further build configuration. . . . . . . ... .. ... ... XXII

X1



Contents

xii



1

Introduction

In a time when practically every machine has the potential to execute code in par-
allel, most programs do not fully lever this, letting machine power go to waste.
Despite the fact that frameworks and techniques to simplify the process of writing
parallel code exists, using them is still a demanding task in both time and resources.

It would be nice if we could abstract over parallelism and let the compiler do the
heavy lifting for us. Imagine writing a legible program free from explicit evalu-
ation order logic, with the compiler identifying points of possible parallelism and
restructuring the code in a semantics-preserving way to make this opportunity for
parallelism explicit. This restructuring could enable automatic execution tooling for
parallelism to schedule the code for multi-core execution.

This idea may sound visionary, but is the same path we took with memory man-
agement; in some circumstances, we still need the manual control, but in most,
the memory management provided by the compiler is more than satisfactory. In the
same way, we would like our programs to be able to make use of available parallelism
without the overhead of code for that sole purpose and to leave manual tinkering
for situations with particularly high-performance demands.

This approach has an important consequence: since it is implemented in the com-
piler, we can empower old programs with retrofitted parallelism. This means that
the advances of this programming language technology not only affect new programs
but can also improve the performance of old code.

There have been successful advances in this field of implicit parallelism, but there is
still a lot of room for further progression. For example, inside the Glasgow Haskell
Compiler there are mechanisms for inferring parallelism in certain circumstances.
We further develop this implementation, together with related functionality, to reach
wall-clock performance speedups.
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Background

This thesis is focused on certain internals of GHC [1], the Glasgow Haskell Compiler,
a complex piece of software itself written in Haskell [2]. This chapter aims to explain
important concepts from Haskell the language, elaborate on the parts of the compiler
where our main contributions are focused and what its current shortcomings are,
as well as showcase an execution library that can lever our improvements for better
wall-clock performance, Hax1.

2.1 General knowledge of Haskell

This thesis dwells quite deeply into Haskell as a language. We try to assume as
little knowledge as possible and explain terminology as it appears, but we do expect
knowledge of the language corresponding to a basic course and some general insight
into programming language technology and functional programming concepts.

For supporting literature we can recommend Miran Lipovaca’s excellent book Learn
You a Haskell for Great Good! [3], which is available freely on the web or in a physical
edition. Another great resource is Graham Hutton’s Programming in Haskell [4].

2.1.1 The Functor, Applicative and Monad abstractions

The Functor, Applicative and Monad abstractions are central to Haskell, and also
this thesis. We dedicate this section to explaining them, how they relate, and in
what way they represent certain properties that are important for our contributions.
As a rule of thumb, less strict constraints on a function are good since it becomes
more polymorphic. Therefore, a Monad constraint where the weaker Applicative,
or more so Functor, would have been sufficient can be considered a code smell.
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2. Background

2.1.1.1 The Functor class

The Haskell Functor class is an abstraction for a data structure with a way of
applying a function over its inhabitants, instantiated by implementing the function
fmap. For example, a list is a Functor defined in such a way that applying a function
over a list applies it to all of its elements. Below, we show the type class definition
and instance for lists.

class Functor f where
fmap :: (a -=>b) > f a->fb

instance Functor [] where
f “fmap® [] =[]
f “fmap® (a:as) = f a : £ “fmap™ as

> fmap (+1) [1,2,3]
[2,3,4]

The type of fmap tells us that it takes a function of type a -> b and a data structure
with values of type a, and transforms it into a data structure with values of type b.
fmap is also available as the infix operator <$>

For the Maybe type, representing possible absence of values, applying a function to
Nothing does no computation at all, while on a Just a, a is applied to the function.

instance Functor Maybe where
f “fmap® Nothing = Nothing
f “fmap® (Just a) = Just $§ f a

For the context of this thesis, Functor is important as it is a basic computation of
lesser constraint compared to the stronger classes Applicative and Monad. This
means that a function only needing the Functor constraint works over strictly more
values which is good in a polymorphic sense.

2.1.1.2 The Applicative class

Since the first argument in fmap has to be a single, pure function that is not con-
tained in the functor, fmap cannot be used for repeated application to functions
with multiple arguments:

binFunc :: a -> a -> a
> binFunc “fmap™ Just 1 :: Num a => Maybe (a -> a)
-— Cannot apply second argument using fmap
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By applying the first argument to the binary function, the partially applied function
will be returned in a Maybe, as shown in the example above. The next argument can
therefore not be applied using fmap, since it is not an ordinary function type any
more. To be able to apply more arguments, the stronger Applicative constraint is
required, allowing us to do partial application with data structures. Let us look at
the Applicative type class definition and the instance declaration for lists:

class (Functor f) => Applicative f where
pure :: a -> f a
(<¥>) 1+ f (a->Db) >fa->fb

instance Applicative [] where
pure x = [x]
fs <x> as = [f a | £ <- fs, a <- as]

The function pure specifies how to bring something into the context of the data
structure. For this particular case, this means putting it in a singleton list.

The application operator <*>. or splat, specifies what it means to apply an instance
of the data structure with values, to an instance filled with functions. For lists, this
means applying each of the values to each of the functions:

> let fS [(++ lllll), (++ ||2||)]
> let as = [nan, ”b”, ”C"]

> fs <x> as

["al" "ph1" Meq" "g2" "p2" "C2"]

For the Maybe type, the semantics are again different. If any step of the computation
yields Nothing, subsequent computations will be short-cut to Nothing;:

instance Applicative Maybe where
pure = Just

Nothing <*> _
Just £ <*> as

Nothing
fmap f as

While possibly tricky to see from the types, this works well with functions of several
arguments. If we give b the type b -> ¢ of <*>, we get this:

(<¥>) :: f(a->Mm->c¢c)) >fa->f (b->c)

If we then supply an argument to the functions in the first argument with <*>, we
are ready for another one right away:



1

2. Background

> (pure (+)) <*> Just 1 <*> Just 2
Just (1 +) <*> Just 2 -- Just 1 applied
Just 3 -—- Just 2 applied

It is noteworthy that a, b and f are independent and could be evaluated in parallel.

2.1.1.3 The Monad class

The strength and weakness of the Applicative class is the independence of opera-
tions. This expresses parallelism, but cannot allow us to choose what operations to
perform later in the computations depending on the value of the result from earlier.

Monads are best explained through examples, so we look at the class declaration for
Monad and the instance for Maybe:

class (Applicative m) => Monad m where
(>>=) ::ma->(a->mb) ->mb

The bind operator (>>=)allows us to connect two computations, just like <x>. How-
ever, the second argument is allowed to be dependent on the results from the first
computation. This makes it possible to take a decision on what to do next depending
on the value returned from earlier computations.

instance Monad Maybe where
Nothing >>= _ = Nothing
Just a >>= Nothing = Nothing
Just a >>=f =f a

This looks deceivingly similar to the Applicative instance, but the difference lies
hidden in the type of the continuation function: £ :: a -> m b. With this, we
can define more intricate computations working with intermediate results:

> let a = Just 3
> let sqr x = Just (x*x)

> a >>= \root -> sqr root >>= \square -> pure (root, square)
Just (1,2)

This syntax can quickly get complicated and hard to read; to make this easier Haskell
supports do-notation. The same function can be written as:
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> let a = Just 3
> let sqr x = Just (x*x)

do
root <- a
square <- sqr root
pure (root, square)

Every line in this notation is called a statement, and together they are referred to
as a do-block. This notation is purely syntactic sugar, and in the compiler it is
converted to using bind with simple rules:

f = do
a <- something
somethingElse a 5
pure a

-- Is desugared into

f = something >>= \a ->
somethingElse a 5 -> \_ ->
pure a

The possibility of chaining of computations is a powerful property of monads and
can result in nested monadic computations which can be flattened using the function
join. The join function removes one layer of monadic structure, by merging the
two outer layers:

join :: Monad m => m (m a) -> m a
join x = x >>= id

With join, we can use functions that give results wrapped in a monad. Because
Maybe is an instance of Monad, join can be used:

let f x = Just (x+1)
let b = Just 1

> pure f <*> b

Just (Just 2)

> join § pure f <*> b
Just 2

A few monad laws need to be fulfilled to make sure monads behave as expected [5]
These are not enforced by the compiler so the developer of a monad has that re-
sponsibility. These laws are:
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o Left identity: return a>>=f = f a
o Right identity: m >>= return = m
o Associativity: (m>>= f) >>= g = m>>= (\x > f x >>= g)

Since monads extend applicatives, for a monad to behave as expected when used as
an applicative, these laws must also be true:

pure = return
(<x>) = ap

ap :: (Monad m) =>m (a ->b) ->ma ->mb
ap ml m2 = do

x1 <- ml

x2 <- m2

return (x1 x2)

This constraint is not always wanted and there can be good reason to break it, with
the loss of the behaviour guarantees. One example could be performance gains in
form of parallelism; this is the case with Hax1, which we will see in Section 2.4.

2.1.2 GHC language extensions

To enable compatibility between different Haskell compilers there is a language stan-
dard (e.g. Haskell98 or Haskell2010), keeping the language stable for longer periods
of time. To enable the GHC development team to add new and interesting func-
tionality between these updates, standard-breaking, non-backwards-compatible, ex-
perimental, or controversial features are activated using language extensions. These
range from complex modifications to simple fixes and many are commonly used.
They appear in this thesis, and some of the more common ones are elaborated upon
in Appendix A.

2.2 Flexible desugaring of do-notation

As shown in the monad introduction, the do-notation is simply syntactic sugar for
the monadic bind operator (>>=). This section explains recent developments of
GHC that have generalised this translation into a more flexible system, allowing do-
notation to be used without necessarily demanding a monadic, and hence sequential,
constraint.

The paper Desugaring Haskell’s do-Notation into Applicative Operations [6] de-
scribes extension of do-notation that liberates it from being exclusive to monads, to

8



10

11

12

13

14

15

2. Background

being available for applicatives as well. The functionality is implemented in GHC
as a language extension called ApplicativeDo, which turns on an algorithm in the
compiler with the same name. This makes it possible to take advantage of the less
dependent relation between arguments of the applicative operators, thus allowing
parallelism to be expressed inside do-notation.

While the standard translation of do-notation to monadic binds is straightforward,
the generalised do-notation translates into a combination of monadic binds and the
applicative operator <x>. There can be numerous valid translations and they are
translated in different ways depending on how the variables in the block are used,
making it a complex task. The goal of the algorithm is to analyse the decencies
between statements and return an expression with as little forced sequentiality as
possible. An example of the ApplicativeDo translation can be found in Listing 1;
this is explained in further detail in Section 2.2.1.

How to find this optimal translation is a big part of the paper. If done successfully,
few or no unnecessary dependencies are present in the desugared code, and libraries
modifying execution order, such as Hax1! (described in Section 2.4), can make use
of the independence in applicative expressions for running statements in parallel.

main = do

x1l <- a
x2 <- b x1
x3 <- c

return (x2,x3)

-- Standard do-desugaring
main = a >>= \xl1 ->
b x1 >>= \x2 ->
c >>= \x3 —>
return (x2, x3)

-— Ezpected output from ApplicativeDo, with no forced sequentiality
-- between evaluation of the expressions (a >>= b) and c
main = (,) <$> (a >>= b) <*> ¢

Listing 1: An example of how a function containing a do-block with dependencies
desugars. The standard desugaring result forces sequential execution
through the >>= operator. The ApplicativeDo algorithm however
only forces sequentiality between a and b.

'https://github.com/facebook/Hax1l
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2.2.1 The ApplicativeDo algorithm

The ApplicativeDo algorithm works in two stages: rearrangement and desugaring.
Rearrangement collects statements in groups so that it enables as much parallelism
as possible; it builds an intermediate tree structure of groups, where groups with
dependencies between them are connected sequentially, and independent groups in
parallel with each other. These groups does not re-order any statements; flattening
the tree of groups will result in the original code.

The second stage desugars this intermediate tree structure into a proper Haskell
expression using <*>, <$>>>= and join.

2.2.1.1 Rearrangement

Consider the statements of a do-block, excluding the final statement which will
be saved for the next stage. Each statement may or may not depend on any of
the earlier statements in the block. The dependency structure of the example in
Listing 1 is shown in Figure 2.1.

—_ .
{x1 <- a} {x2 <- b x1} {x3 <- ¢}

Figure 2.1: Dependency graph of the code in Listing 1, showing the dependencies
between statements.

From a parallelism perspective, it would be ideal if all the statements could be
segmented into groups without intermediate dependencies, meaning that they can
be evaluated completely in parallel. Here however, there is a dependency from {x2
<- b x1} to {x1 <- a} which prevents that. {x3 <- c}, however, do not depend
on anything; this statement can be evaluated independently of the other two. The
ApplicativeDo algorithm looks for independence between statements, like between
{x3 <- c} and {x2 <- b x1}. In general, if there is a splitting point in between
statements which do not break any dependencies, the statements are split at that
point into two groups. The split in the do-block shown in Listing 1 is shown in
Listing 2.

x1 <- a

x2 <- b x1
————————————————— Splzit

x3 <- ¢

Listing 2: The only way to split the statements in the Listing 1 do-block without
breaking any dependencies. b uses the result x1 from computation a;
this is a statement dependency.

10



2. Background

If it is possible to do a split without breaking any dependencies, as shown in the
example above, the algorithm recursively rearrange each resulting group.

However, if it is not possible, the do-block has to be sequentially split. Let us revisit
a practical example of how the ApplicativeDo algorithm works from the original
paper. Consider this piece of code:

do x1 <- a
x2 <- b x1
x3 <- ¢
x4 <- d x3
x5 <- e x1 x4

return (x2,x4,x5)

Listing 3: Example do-block from the Desugaring Haskell’s do-Notation into
Applicative Operations paper.

These statements are not all independent, since some use the results from others; this
dependency structure is shown in Figure 2.2. Since this graph is a bit convoluted, a
simplified version is shown in Figure 2.3. Here, the letters refer to the right side of
each statement. This representation is used from here on.

{x1 <- a} {x2 <- b x1} {x3 <- c} {x4 <- d x3} {x5 <- e x1 x4}
\/ W

Figure 2.2: Dependency structure of the code in Listing 3, showing the
dependencies between statements.

Figure 2.3: Simplified dependency graph of the code snippet above, which shows
the dependencies between statements written as letters referring to
the right side of a statement. For example, the arrow from E to A
shows that E uses the result of A; this of course means A has to be
run before E.

The dependency from E to A prevents any parallel segmentation without breaking
dependencies. Therefore the algorithm proceeds to split the sequence in two blocks,
which will run sequentially to each other. Each of these parts is then recursively
rearranged by checking for possible parallel segmentation and splitting if necessary.
Trying all possible splits between statements and then segmenting gives us the fol-
lowing candidate solutions:

11
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AB : A B'DE A B!
‘cp g ABIGCDE &~ CD'E
RN I : S ~—

Figure 2.4: Execution graphs of candidate solutions after a single sequential split,
shown as a dotted line. Segments on different lines are independent,
so in the first, solution B can be run in parallel with C-D-E.

The ApplicativeDo algorithm will then determine which of these rearrangements
that has the lowest total cost. Again, the algorithm assumes unit cost for all of the
statements. Here a split after D (the rightmost rearrangement in Figure 2.4) seems
to be the one with the lowest total cost of 3, by first evaluating A and B in parallel
with C and D, then finally evaluating E, and is therefore chosen.

To find the optimal placement of these sequential splits, the algorithm simply tries
all the possibilities and picks the best. The algorithm must know what best is, and
for that we need a cost model. We denote each sequential enforcement with ; and
each independent split with |. Using this syntax, we can encode the rearranged
code in Listing 2 and Listing 3 as:

({x1 <= a} ; {x2 <= b x1}) | {x3 <= c}
({x1 <- a} ; {x2 <= b x1}) | ({x3 <= c} | {x4 <- ¢c x3}) ; {x5 <- e x1

Listing 4: Encoded rearrangement of Listing 2 and Listing 3, with each
sequential enforcement with ; and each independent split with |.

From this syntax a simple cost model is defined:

cost(E) =1

cost({x <- E}) = cost(E)

cost(A | B) = max(cost(A) , cost(B))
cost(A ; B) = cost(A) + cost(B)

Listing 5: Simple parallel unit cost model from the paper.

This cost model builds on the assumption that each statement has the same cost,
which is of course a simplification, since in practice this is seldom true. The cost of
groups running in parallel is defined as the cost of the most expensive group, while
the cost of groups running in sequence is naturally defined as the combined cost of
the groups.

An optimal or heuristic rearrangement can be used in the algorithm. The optimal
will recursively test all possibilities, possibly giving a better solution at the expense of
an increased compilation time. The heuristic version, which is the default, abandons
the exhaustive search of arrangements and instead makes a local decision when faced
with a group of statements that can’t be split without breaking any dependencies.
The algorithm then enforces sequentiality between the longest initial subsequence

12

x4 }



2. Background

of mutually-independent statements and the rest of the statements, then continuing
the same search for the next possible non-dependency breaking splitting point.

2.2.1.2 Desugaring

After rearrangement, we have a structure for what needs to be sequential and what
can be parallel. This needs to be desugared into a proper, runnable Haskell expres-
sion.

Desugaring builds the expression from the rearranged statements, including the
return statement, using the <*>, <$>>>= and join functions. It does this by con-
necting parallel blocks using <*>, and sequential blocks with >>=. The simplified
rules for applying these functions are seen in Listing 6.

desugar ({b1} | {v2} | .. | {bn}) =

f <$> desugar bl <*> desugar b2 <*> .. <x> desugar bn
desugar ({b1} ; {v2} ; .. ; {bn}) =

desugar bl >>= \xl1 -> desugar b2 >>=

\x2 -> .. -> desugar bn >>= \xn -> f

Listing 6: The simplified rules for the desugar stage, which connects independent
groups with <x*> and dependent groups with >>=. Here, f is a function
for the returning statement.

Looking at the example in Listing 7, the rearrangement will be > ({x1 <- a} | {x2
<- b}) ; ({x3 <- ¢ x1} | {x4 <- d x2})’. This is to be read as follows: ’{x1
<- a}’ and ’{x2 <- b}’ can be run in parallel, sequentially prior to, running ’{x3
<- ¢ x1}’ and ’{x4 <- d x2}’ in parallel.

Combining this rearrangement with the desugaring rules will yield the code of main1
in Listing 8. The first solution in Listing 8 is correct, but requires an unneces-
sary construction of a pair which has a minor performance overhead. To overcome
this, the results of the first block (containing a and b) are supplied to the second
(containing ¢ x1 and d x2) as arguments. This will result in a nested applicative
computation, a computation returning another computation; this can be flattened
using the join function.

As stated, the rules shown are simplified. The real algorithm is more intricate,
considering more cases and using clever shortcuts to optimise the translation. The
details on how the desugaring works are not important to understand since they
merely simplify the generated expressionst. For more detailed information on this,
Desugaring Haskell’s do-Notation into Applicative Operations [6] is a worthy read.
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main = do

x1l <- a
x2 <- Db
x3 <- ¢ x1
x4 <- d x2

return (x3,x4)

Listing 7: An example of a function containing a do-block with statement
dependencies.

mainl = ((,) <$> a <*> b)
>>= \(x1,x2) ->
(,) <$> c x1 <x> 4 x2

-— Nesting the applicatives to avoid the extra the pair constructor
main2 = join (

(\x1 x2 ->

(,) <$> ¢ x1 <*> d x2)

<$> a <*> Db

)

Listing 8: Two different ways to desugar the code in Listing 7. The first
constructs an extra pair, (,), which creates unnecessary overhead.
The better solution uses nested computations and join to flatten the
final answer, neatly avoiding this issue.

2.3 Possible improvements to ApplicativeDo

The paper Desugaring Haskell’s do-Notation into Applicative Operations [6] intro-
duces a basic unit cost model. This of course leads to the phrasing optimal in the
algorithm being somewhat misleading. With better compile time information at
hand, we could consider costs better representing the actual execution cost. The
paper states:

We can sometimes do better if we have more knowledge about the exact
cost of statements, but in general that knowledge is not available.

It is from this statement we derive our research questions:

o Can we extend the ApplicativeDo algorithm to make better decisions, given
information about statement evaluation cost?

o How can we provide the ApplicativeDo algorithm with this cost information
with minimal programmer overhead?

14
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2.3.1 Flaws under variable evaluation time

Here we show how the current cost model leads to imperfect decisions when consid-
ering variable statement execution time. To do this, let us revisit the example from
Section 2.2.1, with its candidate solutions:

do x1 <- a
x2 <- b x1
x3 <- ¢
x4 <- d x3
xb <- e x1 x4

return (x2,x4,x5)

Listing 9: Example do-block from the Desugaring Haskell’s do-Notation into
Applicative Operations paper.

A B - A B.DE A B!
'C D E U‘w é\_/iv %;E
NN (N [\ ~ S

Figure 2.5: Execution graphs of candidate solutions for the above example.

This is the main issue: the current cost model assumes that each statement takes
the same amount of time to evaluate. However, the statements B and E may,
for example, in reality take four and two times as long as the other statements,
respectively! If we assign these statements the corresponding costs, as shown in
Figure 2.6, the execution graphs change. The right graph, which with unit cost
was the optimal solution, now gives a total cost of seven, while the left graph now
has a total of five. This means that when considering varying evaluation times, the
ApplicativeDo algorithm is no longer optimal.

This shows that the unit cost model is not a good fit for deciding how to rear-
range variable cost statements; a better model indicating more realistic evaluation
costs would allow us to make smarter decisions in the algorithm. The information
could for example come from optional programmer weight annotations, which is also
something this thesis will investigate.

Now it should be clear how ApplicativeDo allows automatic inference of available
parallelism by clever analysis of do-blocks. However, nothing automatically executes
these programs in parallel; we need to use a library that can lever the implicit
parallelism of applicatives in how it schedules code for execution. We hope to
see further development in this exciting field, but currently Haxl is unique in this
capability to our knowledge.

15
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AiB—B—B—B A B—B—B-B|
'C D E-E CD E—E

Figure 2.6: Execution graphs which show available parallelism for two different
solutions, with B and E having real costs of 4 and 2 respectively. It it
clear that the left graph is a better solution because it represents a
more parallel evaluation.

2.4 The Haxl abstraction

The paper There Is No Fork: an Abstraction for Efficient, Concurrent, and Con-
cise Data Access [7] describes a new programming abstraction using the implicit
parallelism of the applicative operator ’<*>’. This abstraction is implemented as
the Hax1l monad, and its primary target is to use implicit parallelism of applicative
expressions, to make data fetching purely functional and concurrent.

The reason that ’><*>’ represents parallelism is that, as described in Section 2.1.1.2,
its arguments cannot depend on each other. Without any dependencies between
them, they could be performed in parallel. For example: in ’f <*> a <x> b’, ’a’
and ’b’ cannot depend on each other.

Hax1 is implemented as a monad and with it comes the dataFetch function, which
is used to fetch data using 10:

newtype GenHaxl u a
instance Functor (GenHaxl u) where ...
instance Applicative (GenHaxl u) where ...

instance Monad (GenHaxl u) where ...

dataFetch :: (DataSource u r, Request r a) => r a -> GenHaxl u a

Listing 10: Hax1l monad

Hax1l gains concurrency through the property of how its fetches are handled. Each
time the evaluation is faced with a fetch, the request is noted and the evaluation
continues elsewhere. Ideally, the fetches are taken care of simultaneously but it is up
to the programmer to decide. Once all further evaluations are blocked waiting for a
fetch, the evaluation progress halts and waits for the fetch result. The evaluation can
continue when fetching completes. This property makes it so that multiple fetches
used by non-dependent functions, such as *<x>’  can all be noted and performed
independently from one another when needed. In the case of dependent fetches,
such as when connected with a ’>>>=’_ the fetching needs to be done in sequence.

16
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Since Haxl can make use of a combination of both dependent and non-dependent
fetches, Haxl can translate non-dependencies in programs into parallelism. The real
issue lies with the programmer needing to avoid unnecessary dependencies to make
the most out of Haxl. Generally, building programs without unnecessary depen-
dencies is hard and avoiding precision coding using ’<*>’ and ’»=’ would thus
be preferred. We would, therefore, like to be able to combine the more intuitive
do-notation with Haxl without adding unnecessary dependencies and thus losing
parallelism. ApplicativeDo, described in Section 2.2, does just that. The sym-
biosis of Haxl and ApplicativeDo makes it so that there is no need for explicit
parallelism, but the extension infers it from dependencies in the do-blocks. This
means that improvements to the ApplicativeDo algorithm will directly affect the
runtime performance of Haxl programs written in do-notation, since it allows for
more parallelism but never adds sequentiality.

2.4.1 Usage of Haxl

To use the dataFetch operations, requests have to be predefined and used by a data
source. Consider the example in Listing 11, especially how requests are defined and
then used by a data source.

The example shows a simplified program that fetches all values from a remote server.
At first glance, the do-block on lines 11-14 looks entirely sequential, but beyond the
non-dependent <x>, Hax1 can also gain parallelism by other non-dependent functions
such as mapM. Since mapM does not have any intermediate dependencies, each fetch
can be taken care of separately from the evaluation of the rest of the code.

To complete the example above, the DataSource instance would need to be im-
plemented, which at the current version is tailored to batch fetches. Batching is
a crucial feature of how Haxl is used for data fetching; it utilises that multiple
fetches can be sent over the network as a single request instead of individually. An
in-development version of Haxl has a new mode which can prioritise parallelism
over batching. This version has not yet been released at the time of writing but is
described with examples in Section 3.2.2.3, and available at GitHub?.

Even though Hax1 is made for the specific purpose of data fetching, it can be used
for a variety of tasks where implicit parallelism can be used, such as other remote
or local data operations. In Section 3.2.2, we describe utilisation of Hax1 in another
context.

2Haxl 2.0 https://github.com/facebook/Hax1l/releases/tag/2.0.0.0
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data MyRequest a where -- Define types of requests
GetAllIds  :: MyRequest [Int]
GetValueById :: Int -> MyRequest String

instance DataSource () MyRequest where -- Implement the remote
fetch state flags userEnv reqs = ... -- fetching procedure

main :: I0 O
main = do
env <- initEnv initialState ()
values <- runHaxl env $ do -- This do-block is a Hazl program
x <- dataFetch GetAllIds
y <- mapM (dataFetch . GetValueById) x
return y
putStrLn $ "Values" ++ show values

initialState :: StateStore
initialState = stateSet NoState stateEmpty
-— Required boilerplate instances below

deriving instance Show (MyRequest a)
deriving instance Eq (MyRequest a)

instance StateKey MyRequest where
data State MyRequest = NoState

instance Hashable (MyRequest a) where
hashWithSalt salt _ = hashWithSalt salt ()

instance DataSourceName MyRequest where
dataSourceName _ = "MyRequest"

instance ShowP MyRequest where
showp _ = "MyRequest"

Listing 11: A simple Hax1 example where ids are fetched from a remote data
source followed by fetching those id’s values.

18



3

Contributions

In this chapter we describe and document our contributions, together with the ex-
planation and motivation of decisions. The sections can be summarised as follows:

o Section 3.1 describes extension of the ApplicativeDo algorithm with a more
elaborate cost model.

e Section 3.2 describes an evaluation method of discerning whether our improve-
ments to ApplicativeDo is better than the current implementation. What is
a better parallelisation, and how can we measure improvements? We present
both an analytic and empirical way of thought.

e Section 3.3 describes two ways of adding weight annotations. Section 3.3.1
describes a way of adding weight annotations with the use of changes in the
Haskell lexer and parser; this is the final implementation. Section 3.3.2 de-
scribes the GHC annotation pragma, both the inner workings and our use for
weight annotations, together with advantages and drawbacks. This is not part
of the final implementation, but an interesting insight into relevant parts of
the compiler nonetheless.

o Section 3.4 introduces Appendix E, documenting some of our experiences from
developing on GHC: setting up a shared work environment, working with
experimental patches not yet merged into the source control system, build
configuration, et cetera. This is not central to the thesis results.

e Section 3.5 introduces Appendix D, describing the GHC compiler plugin sys-
tem and our experience in working with it. Particularly, we show certain
limitations, that in addition are not solved by a new proposal of extended
plugin support for GHC.

This thesis also aims to be useful as a guide for future MSc thesis projects based
on GHC; this is a particularly complex code base, and a lot of things are sparsely
documented. Therefore, some exploration that is not used in the final result, but
was difficult to figure out and can be useful for readers working in the field are also
documented.
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3. Contributions

3.1 Extended cost model for ApplicativeDo

The ApplicativeDo algorithm is, as described in Section 2.2, implemented in two
ways: an optimal and a heuristic version. The optimal version uses a simple cost
model while the heuristic version uses none at all. The reason for that is that the cost
model, described in Section 2.2.1, is used when choosing where to split a segment,
through inserting a bind. The heuristic version never does this and instead takes
the longest initial sub-sequence of statements with no intermediate dependencies,
abandoning the cost model. We will, therefore, leave it as is to be used when low
compile time overhead is so important that you can compromise runtime. On the
other hand, the optimal version needs a way to compare each possible split to one
another during the exhaustive search of options, with varying execution times.

As described in Section 2.3, weights would be beneficial to make more intelligent
decisions when the ApplicativeDo algorithm desugars code. If auxiliary cost infor-
mation is available for a statement it is used; otherwise, we default to a unit cost, as
shown in Listing 12. This extension to the ApplicativeDo algorithm is completely
agnostic to the source of weight information; later we will present how to get weights
from optional programmer source annotations, but other paths are possible as well.

-— The cost of a statement is 1, or uses additional weight information
cost(E) = [auxiliary if available, else unit]
cost({x <- E}) = cost(E)

-— The model of calculating cost of parallel and sequential
-— operations 1s the same

cost(A | B) = max(cost(A) , cost(B))

cost(A ; B) = cost(A) + cost(B)

Listing 12: Parallel cost model for an optional auxiliary cost of statements.

Using this cost function, each expression in a do-statements is assigned a cost.
Assuming we have a cost available, the extension of the ApplicativeDo algorithm is
straightforward. Instead of the unit cost used in the original version of the algorithm,
the cost is looked up using a function getCurrentWeight, as shown in Listing 13.
Implementation details depend on the particular source of auxiliary costs, so now
we just assume it returns a valid cost.

Costs in ApplicativeDo are only used in the split function, and the changes to the
function are shown below. The task of the function split is, for a sequence s;...s,,
to find the split that leads to the minimum sum of the left and right subsequences.
It is not necessary to understand the function in detail.

The changes in the code are mainly a replacement of the encoding of a unit cost.
The indices hi and lo is the start and end of an interval in the do-block. The
function getCurrentWeight gives the weight/cost for a specific row, while hiCost
and loCost are the costs for the start and end of the interval.
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-- Original code for creating statement trees with costs
split :: Int -> Int -> (ExprStmtTree, Cost)
split lo hi
| hi == lo = (StmtTreeOne (stmt_arr ! lo), 1)
| otherwise = (StmtTreeBind before after, cl+c2)
where
((before,cl), (after,c2))
| hi - lo ==
((StmtTreeOne (stmt_arr ! lo), 1),
(StmtTreeOne (stmt_arr ! hi), 1))
| left_cost < right_cost
= ((left,left cost), (StmtTreeOne (stmt arr ! hi), 1))
| left_cost > right _cost
|

((StmtTreeOne (stmt_arr ! lo), 1), (right,right_cost))
otherwise = minimumBy (comparing cost) alternatives

-— Modified code for creating statement trees with weighted costs

split :: Int -> Int -> (ExprStmtTree, Cost)
split lo hi
| hi == lo = (StmtTreeOne (stmt_arr ! lo), loCost)
| otherwise = (StmtTreeBind before after, cl+c2)
where
((before,cl),(after,c2))
| hi - lo ==
= ((StmtTreeOne (stmt_arr ! lo), loCost),
(StmtTreeOne (stmt_arr ! hi), hiCost))
cost0 == costn && left_cost < right_cost
((left,left _cost), (StmtTreeOne (stmt _arr ! hi), hiCost))
cost0 == costn && left_cost > right cost

| otherwise = minimumBy (comparing cost) alternatives
loCost = getCurrentWeight lo
-= " Cost for statement on row 'lo'
hiCost = getCurrentWeight hi
-— 7 Cost for statement on row 'ht'
cost0 = getCurrentWeight O
-— T Cost for statement on first row
costn = getCurrentWeight n
-— 7 Cost for statement on last row

((StmtTreeOne (stmt_arr ! lo), loCost), (right,right cost))

Listing 13: Changes in the ApplicativeDo algorithm to make use of weights for

each statement in a do-block.
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3.1.1 Split optimisation shortcut

There is an noteworthy optimisation in the ApplicativeDo algorithm, located in the
function split, which uses Theorem 4.3 from Marlow et al. [6]. The theorem says
that if the statement subsequences s;...s,_1 and $s...s, differ in cost, the optimal
solution is the cheaper of the subsequences running sequentially to the remaining
statement. Only when the subsequences have the same cost, an exhaustive search
is needed to find the optimal rearrangement.

With the changes to the ApplicativeDo algorithm, the optimisation no longer func-
tions as intended since it depends on the unit cost model. This simple counter
example shows that the theorem do not hold for the changed context:

do
x1 <- a {-# Weight 3 #-}
X2 <- b {-# Weight 1 #-}
x3 <- ¢ x1 x2 {-# Weight 1 #-}

Listing 14: Example where the optimal split is not the same as said in Theorem
4.3 in Marlow et al. [6]. Hence, the optimisation is not valid for the
extended cost model.

Following the theorem, the subsequence s;i...s,_1 will be {x1 <- a}, {x2 <- b}.
Since it does not have any dependencies, it will have a cost of Maxz(3,1) = 3. The
other subsequence, {x2 <- b}, {x3 <- ¢ x1 x2}, has a dependency and a cost of
1+ 1 = 2. The theorem stated that the lowest of them will be optimal, which in
this case is {x2 <- b}, {x3 <- ¢ x1 x2}. Adding the final cost for {x1 <- a} the
total cost is 2+ 3 = 5. That is not optimal since a split after {x2 <- b} will result
in a cost 4.

This optimisation can be adapted to the new cost model by verifying that the cost
of the left and rightmost statements in a sequence are the same, then the same logic
as presented in the paper applies. An adaptation to correct for this issue is shown
in Listing 13, lines 27 and 29.

3.2 Evaluation method

To judge the effect of changes to the ApplicativeDo algorithm, we need a way to
compare whether the resulting code after desugaring has better or worse character-
istics. We approach this in two different ways: first through analytic evaluation to
make sure the approach is sound, by evaluating and inspecting rearrangements of
code by ApplicativeDo; second, through empirical experiments with Hax1l running
pure computations with different execution times in parallel, so not only remote
data fetching operations.
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3.2.1 Analytic evaluation

In ApplicativeDo, different rearrangements are often possible for a given depen-
dency graph. Since each statement has a weight, annotated or defaulted to one,
we can compute the total cost of the block using the parallel cost model previously
shown. Depending on how the costs are distributed over the statements, the optimal
rearrangement may differ.

Since the improved ApplicativeDo algorithm will give the rearrangement with the
lowest cost, which in theory also is the optimal rearrangement. Finding the this
rearrangement for a given program with weights is possible given all rearrangements
and the cost model presented in Section 2.2.1. To derive all the rearrangements, the
algorithm described in Section 2.2.1 can be used for a given do-block.

To evaluate the effect of our improvements, we compare the total cost of the rear-
rangement from the original algorithm and the changed algorithm, with the correct
costs considered. If these costs correspond to the actual computational complexities,
a lower total cost corresponds to a more parallel program. Section 4.3.1 presents
the improvements achieved.

3.2.1.1 Evidence of optimality in improved algorithm

To ensure that the optimal rearrangement correspond to the result from the im-
proved ApplicativeDo, we can inspect the code directly when it leaves the desug-
arer. Consider the rearrangements derived in Section 2.2.1:

A A B
C

A B CDE

[ . (Q
7 7

D E A
C

B B
' C D E D

¥

Figure 3.1: Execution graphs of candidate solutions after a single split, shown as
a dotted line, with segmenting indicating available parallelism.
Segments on different lines are independent, so in the first solution B
can be run in parallel with C-D-E.

We want to verify if the algorithm gives the anticipated rearrangement. To do
this we inspect the code directly when it leaves the desugarer. By passing the flag
—-ddump-ds to GHC, we get the fully desugared, mid-compilation code dumped from
the compiler. It is not straightforward to evaluate the output by running it since it
only contains implicit parallelism and no explicit threading logic. But we can do an
analysis by looking at the dependency structure of the desugared code. Given this
example do-block, we desugar and analyse the result:
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-— a, ¢, and d have equal evaluation cost.
-— b and e are 4 and 2 times as computationally heavy.
main = do

xl <- a

x2 <- b x1 -— Known computational complezxity factor of four
x3 <- ¢

x4 <- d x3

x5 <- e x1 x4 -- Known computational complexzity factor of two

print (x2,x5)

Listing 15: Example do-block with statements of different computational
complexity.

With the actual weights integrated with the new ApplicativeDo algorithm, the
anticipated rearrangement is the leftmost in Figure 3.1. If no weights are used in
ApplicativeDo, the anticipated rearrangement is the rightmost one.

We show the analytic method on the standard sequential desugaring of the do-
block, before looking at the more complicated ApplicativeDo dumps. Without
using ApplicativeDo, the desugaring will be a sequence of binds, which as we know
are inherently sequential:

mainl -- NORMAL, without ApplicativeDo
= a >>=
\x1 -> b x1 >>=
\x2 -> ¢ >>=
\x3 -> d x3 >>=
\x4 -> e x1 x4 >>=
\x56 -> print (x2, x5)

Listing 16: Heavily simplified output from -ddump-ds of desugared code from
Listing 15

We denote independent statements (x | y), and a dependency with (x ; y),
meaning y is dependent on the result of x. The latter is what (x >>= y) expresses,
so if we replace >>= with ; in the snippet above, we get the piece of psuedocode
shown in Listing 17. As expected, the dependency structure of the do-block without
ApplicativeDo corresponds to a sequential chain of statements.

Now we want to look at the desugaring with ApplicativeDo, with and without
weights, respectively. The expression (x >>= y) indicates a dependency, whereas
(x <$> y) and (x <*> y) both have independent arguments. We can disregard
the join function since it simply flattens the complete expression. Replacing these
functions with appropriate dependency symbols, we can calculate a cost for the
do-block with and without using weights in ApplicativeDo:
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mainl -- Vanilla desugaring, without ApplicativeDo
=a; \x1 >bxl; \x2->c; \x3 ->4d x3 ;
\x4 -> e x1 x4 ; \xb -> print (x2, x5)

Listing 17: Dependency structure of the desugared code from Listing 15, without
ApplicativeDo.

-— Heavily simplified output from —-ddump-ds of desugared code
main?2
= join ((fmap -- Partial function. x4 comes from <*>
(\(x1, x2) x4 -> e x1 x4 >>= (\ x5 -> print (x2, x5)))
(a>=\x1 -> fmap (\x2 -> (x1, x2)) (b x1))
)
<*> -- PARALLEL!
(¢ >=1\x3 -> fmap (\x4 -> x4) (d x3) )

-— Creating dependency structure
main?2
= (
(a ; \x1 -> b x1 ; \x2 > (x1, x2))
|
(c ; \x3 -> d x3 ; \x4 > x4)
) 5 \(x1, x2) x4 -> e x1 x4 ; \x5 -> print (x2, x5)

Listing 18: Simplified intermediate dump, with dependency structure and
without cost calculation from Listing 15. Using ApplicativeDo.
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-— By passing the flag ddump-ds when compiling

main3

=a>>=

\x1 ->
join ( (fmap (\x2 x5 -> print (x2, x5)) (b x1))
<*> —-- PARALLEL!
(c >>=
(\x3 -> d x3 >>=
(\x4 -> fmap (\x5 -> x5) (e x1 x4))
)

-- Creating dependency structure

main3
= a

)

0 \x1 > (
(bx1 | c; \x3->d=zx3; \x4 > e x1 x4 ; \xb -> x5)

\x2 x5 -> print (x2, x5)

Listing 19: Simplified intermediate dump, with dependency structure and cost

26
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Using ApplicativeDo, we get a desugaring with better implicit parallelism. We can
clearly see that we get different solutions when using, or not using weights. By only
looking at the -ddump-ds output, it is not trivial to distinguish which compilation
corresponds to which rearrangement. However, at closer inspection we can see that
Listing 18, which does not use weights, corresponds to the rightmost rearrangement
in Figure 3.1 and Listing 19, which uses weights, corresponds to the leftmost. This
is the expected output for the weights described in Listing 15.

Doing this for multiple examples of weights we get another verification that the
optimal rearrangement is indeed returned from the improved ApplicativeDo algo-
rithm. Worth noting is that this is with a "perfect" weighting, but we show that
using weight information the algorithm can indeed perform better desugaring.

3.2.2 Evaluation using Haxl

Haxl is designed to run as many data fetches in parallel as possible. This is great
in the setting it is designed for — systems with lots of external parts to query —
which benefits greatly from batching requests to the same data source, and querying
different sources in parallel.

We would like to use Haxl for parallelism in other contexts than just remote data
fetching because it is, to our current knowledge, the only library that can auto-
matically take advantage of implicit parallelism in applicative expressions. We can
run any type of computation in parallel with Hax1l by implementing them as data
fetches; which we want both because it is both an interesting approach to automatic
top-level parallelism and easier to use for evaluating the effects of modifications to
the ApplicativeDo algorithm. This way of using Hax1 is a bit contrived; hopefully
we will see libraries for this purpose in the future.

3.2.2.1 Pure computation as data fetches

Arbitrary computation can be masqueraded as a data fetch in Haxl; this can be
done by mocking a data store, where the implementation of the fetch function that
is supposed to pull data remotely instead performs other arbitrary tasks. The tasks
can be run in parallel with the use of a parallel execution library, such as the Par
monad?!, and Hax1 making sure only independent statements ever get run in parallel.
An important note is that the relative order of these computations is arbitrary, but
this is already a property of Haxl: the price we pay for implicit parallel execution
is the loss of ordering other than what is demanded by statement dependency. For
example, the relative order is unknown for the following do-block:

'https://hackage.haskell.org/package/monad-par-0.3.4.8/docs/Control-Monad-Par.
html
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3. Contributions

main = do
x1l <- a
x2 <- Db
return (x1,x2)

Listing 20: Example of a do-block in which the execution order of a and b are
unknown in advance.

In the renaming phase, ApplicativeDo analyses the dependencies between state-
ments in the computation, explores opportunities for applicative expressions for as
much parallelism as possible. Haxl is hence not limited to only performing data
fetches in parallel, but any computation modelled as a data fetch. A small example
of how this can be done in practice can be found in Listing 21; this code is also
available online.?

{-# LANGUAGE GADTs #-}

{-# LANGUAGE StandaloneDeriving #-F}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeFamilies #-}

{-# LANGUAGE OverloadedStrings #-}

{-# LANGUAGE FlezibleInstances #-}

{-# LANGUAGE ApplicativeDo #-}

import Haxl.Core

import Data.Hashable (Hashable (..))

import Control.Monad.Par (runPar)

import Control.Monad.Par.Combinator (parMapM)
import Control.DeepSeq (rnf, NFData)

import System.IO0.Unsafe (unsafePerformIO)
import Data.List (foldl')

data Heavy a where
MockA :: Heavy Integer
MockB :: Heavy Integer

-— Perform all requests to the data source in parallel using
-— the Par monad. Hazl will batch all independent requests to
-— this data source together in the variable regs.
instance DataSource () Heavy where
fetch _ _ _ reqs = SyncFetch $ runPar $ do
parMapM (\(BlockedFetch req var) ->
return $ runHeavy req var) reqs
—-— SyncFetch constructor requires a result of type IO (),
-- but results are passed through an IORef in the runner

2Small Hax1 example: https://git.io/vNHTn
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pure (pure ())

-— By design of Hazl we don't care about the order our effects

-— occur, other than for the dependencies which the library
-- already does in batches. Therefore, 4t is mot a problem to
-— perform our I0 _now_, tndependently of the rest of the I0
-— operations.
instance NFData (I0 ()) where

rnf = unsafePerformIO

-— Defines the semantics of our two actual "data source”
-— operations.
runHeavy :: Heavy a -> ResultVar a -> I0 ()
runHeavy MockA var = do
let !'n = foldl' (+) 0 [1..100000000]
putSuccess var n
putStrLln "MockA finished."
runHeavy MockB var = do
let !n = foldl' (+) 0 [1..100000000]
putSuccess var n
putStrLn "MockB finished."

-- Initiates an (empty) state and runs a Haxzl computation.
—-— Thanks to ApplicativeDo, the two dataFetch calls desugars
-— to applicative operations because they have no dependency,
-— and are performed in parallel by the Hazl framework.
main :: I0 O
main = do
env <- initEnv initialState ()
summed <- runHaxl env $ do
x <- dataFetch MockA
y <- dataFetch MockB
return $ x +y
putStrLln $ "Result = " ++ show summed

initialState :: StateStore
initialState = stateSet NoState stateEmpty

Listing 21: Example of how Haxl data sources can be used to mock any

computation. Some boilerplate instance declarations removed for

brevity.
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3.2.2.2 Limitations of Haxl

The Hax1 library collects independent fetches into a single batch. It waits for the
whole batch of fetches to finish before doing any more calculations, even though one
of them might unlock more evaluation early. Sometimes this leads to unexpected
run-time behaviour, as with the example in Listing 22.

main = do

xl <- a
x2 <- b x1 -- Weight 2
x3 <- ¢ -- Weight 2

return (x2,x3)

mainkExl = a >>= x1 ->
(,) <$> b x1 <x> ¢
mainEx2 = (,) <$> (a >>= b) <*> c

Listing 22: An example of a function containing a do-block with dependencies
and different computational complexities. Two examples of how to
desugar main with applicative syntax are shown as mainEx1 and
mainEx2, these are visualised in Figure 3.2 and Figure 3.3

A B A B

C C

Figure 3.2: A visualisation of the the two ways to arrange the statements in
Listing 22, with the left image being mainEx1 and the right being
mainEx2. Assuming weights as cost, they have the same original
total cost 2, and the same weighted cost 3.

A B A | B

C C

= L

Figure 3.3: An execution visualisation of how Haxl runs the arrangements in
Listing 22, with the left image being mainEx1 and the right being
mainEx2. In the right image, since Haxl waits for the batched call to
finish, both A and C must finish before B can be fetched.
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This simple example shows that two equally parallel desugarings of a do-block does
not yield the same run-time behaviour when used by Haxl. Haxl collects as many
blocking fetches as possible, sends them all on their way, and does nothing until
they all return. Hence, one of the many fetches in a batch may be short and would
unlock further evaluation but batching requires it to wait for the rest of the results
before it can be evaluated.

The uncertainty of run-time behaviour will be present even for improvements for
parallelism and is based on how the system manages batching of fetches. Unfor-
tunately, this makes it impossible to improve on the performance in a reliable way
from the perspective of ApplicativeDo. There is however a new version of Haxl
under development that sidesteps this issue and allows prioritising parallelism over
batching.

3.2.2.3 Haxl 2.0

The limitations presented in the previous section boils down to the fact that Hax1l
trades parallelism for sending fetches in batches. Hax1 is extended in version 2.0 with
an option to fetch instantly (not yet published at the time of writing, but is available
at GitHub?). Instead of collecting fetches to prepare a batch, each will be performed
as soon as possible, and its depending statements can begin evaluating as soon as
the fetch returns, to fully utilise the available parallelism. Using the fetch instantly
option will make Haxl execute the example code shown in Listing 22 as desired
(rightmost illustration in Figure 3.2) instead of the batched version (rightmost in
Figure 3.3).

The parallelism-improved version of Hax1l makes ApplicativeDo algorithm improve-
ments directly affect the execution time positively. It also makes reasoning about
execution time much easier, since the cost model correlates stronger to execution
time without the batching logic complicating things.

To activate the fetch instantly option, SubmitImmediately is passed as a scheduler
hint in the DataSource, together with using BackgroundFetch instead of SyncFetch
as shown in Listing 23. With only these changes, Haxl automatically executes
some programs faster when the improved ApplicativeDo is used, as shown in Sec-
tion 4.3.2.

instance DataSource () Heavy where
fetch _ _ _ = BackgroundFetch $ \(reqs :: [BlockedFetch Heavy]) ->
mapM_ (\(BlockedFetch req var) ->
forkI0 $ runHeavy req var) regs
schedulerHint _ = SubmitImmediately

Listing 23: Changes to DataSource implementation to gain the full power of our
improved implicit parallelism in Haxl 2.0.

3Hax1 2.0: https://github.com/facebook/Haxl/releases
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3.3 Weights for ApplicativeDo

Greater knowledge of evaluation cost would be able to give a better cost function,
and in return, performance could be improved. A simple way to gain this informa-
tion is through optional programmer weight annotations. The option to annotate
does require attention to believed evaluation time but does not require thinking
about the evaluation order logic. A bit of conscious decision is already required for
ApplicativeDo to perform optimally; as described in [6], the order of statements
in a do-block will affect dependency structure, which in turn may affect the per-
formance in the end. The ApplicativeDo algorithm can consider this additional
weight information in the decision making, giving higher priority to parallelisation
of heavily weighted statements.

3.3.1 Weights directly from the parser

This section describes the final implementation of adding programmer weight anno-
tations to do-statements and getting them to the ApplicativeDo algorithm. Sec-
tion 3.3.2 describes the initial implementation with the ANN pragma which works as
a proof-of-concept, but also elaborates on some complications that makes it hard
to work with in practice. This solution is arguably better for the programmer, but
on the other hand requires more intrusive changes to Haskell, namely the lexical
analysis and language grammar.

The main idea here is to modify the lexer and parser to enable adding dedicated
weight pragmas to relevant types of statements in do-blocks, instead of hijacking
the annotation pragma infrastructure. An example of how this looks in practice is
shown in Listing 24. Further information on the practices of lexical analysis and
parsing are out of scope in this thesis, but we recommend Aarne Ranta’s excellent
book Implementing Programming Languages: An Introduction to Compilers and
Interpreters [8].

3.3.1.1 Lexer and parser modifications

First, we need to make the lexer aware of the fact that there are new tokens to
consider when grouping the source code characters into chunks for the parser. These
extensions are shown in code Listing 25.

We also need to extend the parser to get these tokens into the program structure,
for later access down the compiler pipeline. The parser extensions needed for this
are shown in code Listing 26.

In Listing 27, the parser state data is converted to a Map and put into the data
type HsParsedModule in HscMain.hscParse’, which is the first internal represen-

32



15

3. Contributions

tation of a parsed source file. HsParsedModule has a field for the type ApiAnns
(used for other kinds of source annotation), which is extended to also keep the
weights. HsParsedModule is then moved into the typechecking global environ-
ment (TcGblEnv) in TcRnDriver.tcRnModuleTcRnM, which makes for easy access
in ApplicativeDo.

The main difference to the ANN pragma approach is that instead of having binder
names to lookup for weights, source lines already have associated values of type
Maybe Weight. The algorithm works with within-block statement indices, which
point to an expression type with a source line reference, making lookups simpler
than with the ANN pragma. Listing 28 shows how the weights are accessible in
rearrangeForApplicativeDom ready to be used as described by the new cost model
in Section 3.1.

main = do

x1 <- a {-# Weight 4 #-}
x2 <= b x1

x3 <- ¢

x4 <- d x3

x5 <- e x1 x4 {-# Weight 2 #-}

return (x2,x4,x5)

mainHaxl = do
env <- initEnv initialState ()
summed <- runHaxl env $ do
x <- dataFetch MockA {-# Weight 2 #-}
y <- dataFetch MockB
return $ x + y
putStrln $ "Result = " ++ show summed

Listing 24: Using the weight annotations added in the language grammar. Can
be compared to the same example with the ANN pragma approach,
shown in Listing 29.
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-- Weight data type, defined in compiler wide type
-— module BasicTypes.hs
+ data Weight = Weight Integer

-— Eztension of the Token data type
data Token [...]
| ITincoherent_prag  SourceText
+ | ITweight_prag SourceText
I

-—- Eztension of the parser state to keep track of
-— collected weights associated with a source location
data PState = PState {

[...]

-— See note [Api annotations] in ApiAnnotation.hs

annotations :: [(ApiAnnKey, [SrcSpan])],

comment_q :: [Located AnnotationComment],

annotations_comments :: [(SrcSpan, [Located AnnotationComment])],
+ weight_anns :: [(SrcSpan,Weight)]

-- Inittalisation of the parser state
mkPStatePure :: ParserFlags -> StringBuffer

-> RealSrcLoc -> PState
mkPStatePure options buf loc =

[...]
annotations comments = [],
+ weight_anns = []

-— Eztension of the list of recognised one-word pragmas
oneWordPrags = Map.fromList [
("complete", strtoken (\s -> ITcomplete_prag (SourceText s))),
("column", columnPrag),
+ ("weight", strtoken (\s -> ITweight_prag (SourceText s)))
]

Listing 25: Extensions to the lexer module (Lexer.x) to accommodate tokens for
the weight pragmas. Lines starting with a + mark our additions.
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-- List of recognised tokens with corresponding
-- target data structure. 'L' 4is a constructor
-— for a located type, meaning it was an associated
—-— source code position.
Jtoken

-— Haskell keywords

v { L _ ITunderscore }
'case' {L _ ITcase }

[...]

—-— Haskell pragmas

'{-# COMPLETE' { L _ (ITcomplete_prag _) }
+ "{-# WEIGHT' { L _ (ITweight_prag _) }

"#-3 { L _ ITclose_prag

[...]

-- Production for a do-statement. '$1' means
-- the first token, from 'qual' below.
stmt :: { LStmt GhcPs (LHsExpr GhcPs) }

: qual { %1}

-— We do not consider recursive statements.
| 'rec' stmtlist {[...]7%

-— Save weight statements for expression and binding
-—- statements. Weights are produced by 'maybeweight’,
-- and added to the parser state with 'aw'.

qual :: { LStmt GhcPs (LHsExpr GhcPs) }
-— SLL and mkBindStmt are not important and ams will be described below.
+ ¢ bindpat '<-' exp maybeweight {J, (ams (sLL $1 $3 $ mkBindStmt $1 $3)
+ [mu AnnLarrow $2]) >>= aw $4 }
+ | exp maybeweight {7 aw $2 (sL1 $1 $ mkBodyStmt $1)

-— Do not consider 'let' binds because they are pure,
-- and hence not part of the monad expression.
| '"let' binds {[...1%

—-— Production for optional Weights.
maybeweight :: { Maybe Weight }
-- Empty parse, return Nothing. Converted to
-- a unit weight later.
{- empty -} { Nothing }

-- Eat a 'Weight' pragma token, an assoctated
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-- integer literal, and save 2t in a Just.
| '{-# WEIGHT' INTEGER '#-1}'
{ Just (Weight $ il_value $ getINTEGER $2)

-— Getter for the source code associated with the weights.
-— This will be used for inferring weights of functions

-— defined elsewhere.

+getWEIGHT _PRAGs (L _ (ITweight_prag src)) = src

-— For reference, how other annotations are added to
-—- the parser state

ams :: Located a -> [AddAnn] -> P (Located a)

ams a@(L 1 _) bs = addAnnsAt 1 bs >> return a

-— Add weights to the parser state, return the statement
-— untouched.

+aw :: Maybe Weight -> Located a -> P (Located a)

+aw Nothing a = return a

+aw (Just w) a@(L 1 _) = addWeightAt 1 w >> return a

-— Add the weight to the parser state field.
+addWeightAt :: SrcSpan -> Weight -> P ()
+addWeightAt ss w = P $ \s -> POk s {

+ weight_anns = (ss,w) : weight_anns s

+ 3 0O

Listing 26: Extensions to the parser module (Parser.y) to parse the weight
pragma tokens defined in the lexer. Lines starting with a + mark our
additions.
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-— In ApiAnnotation.hs, ApiAnns type is extended to
-—- accomodate weights
type ApiAnns = ( Map.Map ApiAnnKey [SrcSpan]
, Map.Map SrcSpan [Located AnnotationComment]
+ , Map.Map SrcSpan Weight )

-— In HscMain.hs, list of weights from parsing are
-— converted to a Map
case unP parseMod (mkPState dflags buf loc) of
PFailed warnFn span err -> do [...]
POk pst rdr_module -> do
let res = HsParsedModule {
hpm_module = rdr_module,
hpm_src_files = srcs2,
hpm_annotations
= (Map.fromListWith (++) $ annotations pst,
Map.fromList $ ((noSrcSpan,comment_q pst)
: (annotations_comments pst)),
+ Map.fromList $ weight_anns pst)

-— In TcRnTypes.hs, TcGblEnv is extended to
-—- accomodate weights
data TcGblEnv = TcGblEnv {

[...]1,

+ tcg_ann from parser :: Map SrcSpan Weight

-— In TcRnDriver.hs, the global typechecking env.
-— %5 updated with the wetghts from the parsed module
tcRnModuleTcRnM :: HscEnv
-> HscSource
-> HsParsedModule
-> (Module, SrcSpan)
-> TcRn TcGblEnv
tcRnModuleTcRnM hsc_env hsc_src
(HsParsedModule {
hpm_module = [...],
hpm_src_files = src_files,
+ hpm_annotations = (_,_,ssToWeights)
i)
(this_mod, prel imp_loc)
= setSrcSpan loc $
do { let { explicit_mod_hdr = isJust maybe _mod } ;
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tcg_env <- getGblEnv ;
boot_info <- tcHiBootIface hsc_src this_mod ;
setGblEnv (tcg_env { tcg_self boot = boot_info ,

[..

tcg_ann_from parser = ssToWeights }) $ do {
-]

Listing 27: Changes to ApiAnnotation, HscMain, TcRnTypes, and TcRnDriver to
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3.3.2 Weights through ANN pragma

Here we describe the first working solution for weight annotations through the built-
in ANN pragma®; it can be used in the way shown in Listing 29.

While the implementation works without doing any particularly intrusive changes
to the compiler, the approach also has clear drawbacks. It is not possible to do
annotations per statement, like with the parser approach, since the ANN pragma is
syntactically limited to top-level binders, and not possible in nested expressions.
This leads to the user having to do cumbersome refactoring, moving the content
of statements to top-level functions just to annotate with a weight. Additionally,
to annotate different calls to the same function requires it to be refactored to two
functions with different annotations. It could also be argued that the implementa-
tion is a bit of a hostile takeover of a functionality meant for different things later
in the compilation. The rest of this chapter will describe how this approach was
implemented.

3.3.2.1 Implementation of the ANN pragma

To understand how we can use the pragma for our purpose, we take a look at
the implementation of the ANN pragma in GHC. The GHC compilation pipeline is
complex, and some information is only available in certain stages of the compiler;
Appendix C contains a visualisation of this pipeline and may be a useful reference
in this section.

An annotation is represented with the record type Annotation, containing fields for
the name of the binder that is annotated and the payload, which is what we attach
to the binder. In our case, this is the weight expression. The relevant data types
are constructed as shown in Listing 30.

After the rename stage in the pipeline comes typecheck, where a global environment
record gets populated with a lot of things, including the content of the pragmas.
The environment, TcGblEnv (see Listing 31), is a big record where two fields are of
particular relevance since they contain the information from the pragmas. The field
tcg_anns is a list of all annotations, represented in the form shown in Listing 30.

The tcg_ann_env field contains a mapping from unique keys to a list of annotation
payloads in the form of UniqFM, a particularly fast type of map for values of types
implementing Unique. This is a type class making an uniquely identifying integer
key available with getUnique even if we want to look up different types of keys.
In practice this makes it possible to use a fast IntMap, even when we do not really
want to look up integers.

“https://ghc.readthedocs.io/en/master/extending_ghc.html#source-annotations
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rearrangeForApplicativeDo

:: HsStmtContext Name

-> [(ExprLStmt GhcRn, FreeVars)]

-> RnM ([ExprLStmt GhcRn], FreeVars)
rearrangeForApplicativeDo _ [l = return ([], emptyNameSet)
rearrangeForApplicativeDo _ [(one,_)] = return ([one], emptyNameSet)
rearrangeForApplicativeDo ctxt stmtsO = do
+ hscAnns <- tcg_ann_from_parser <$> getGblEnv

optimal_ado <- goptM Opt_OptimalApplicativeDo
+ let stmt_tree | optimal ado = mkStmtTreeOptimal stmts hscAnns

| otherwise = mkStmtTreeHeuristic stmts

-— The optimal algorithm now instead takes a weight map,
-— and getting the weight for a certain statement s
-— very simple.

mkStmtTreeOptimal :: [(ExprLStmt GhcRn, FreeVars)] ->
+ Map.Map SrcSpan Weight ->
ExprStmtTree
mkStmtTreeOptimal stmts weightMap =
[...]

-- First arg is the stmt index, returns corresponding
-— weight. If none annotated, default to unit weight.
getCurrentWeight :: Int -> Int

getCurrentWeight sIx = case stmts !! sIx of
(L ss _, _) —-> checkUnit $ Map.lookup ss weightMap
where

checkUnit :: Maybe Weight -> Int

checkUnit Nothing = 1

checkUnit (Just (Weight w)) = fromIntegral w
[...]

Listing 28: The weights are now readily available inside the ApplicativeDo
code, through the global environment.
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{-# ANN o (Weight 4) #-}
a = ...

{-# ANN e (Weight 2) #-}

x1l <- a

x2 <- b x1

x3 <- ¢

x4 <- d x3

x5 <- e x1 x4

return (x2,x4,x5)

-- Can't just annotate dataFetch, since evaluation cost
-— can depend heavily on the argument.

{-# ANN dataFetchMockA (Weight 2) #-}

dataFetchMockA :: GenHaxl () Integer

dataFetchMockA = dataFetch MockA

mainHaxl = do
env <- initEnv initialState ()
summed <- runHaxl env $ do
x <- dataFetchMockA
y <- dataFetch MockB
return $§ x +y
putStrLln $ "Result = " ++ show summed

Listing 29: Using the weight annotation system built with the ANN pragma.
Forces quite annoying refactoring for the sake of annotation. Can be
compared to the other approach, shown in Listing 24.
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data Annotation = Annotation {
ann_target :: CoreAnnTarget
ann_value :: AnnPayload

+
type CoreAnnTarget = AnnTarget Name
data AnnTarget = NamedTarget name -— General binder
| ModuleTarget Module -- Not relewvant, for annotating

-— a whole module

-- Unique naming information
data Name = Name { ... }

-— Anything serialisable, 7.e. writeable to disk
type AnnPayload = Serialized

Listing 30: Data types for representing content from ANN pragmas.

data TcGblEnv = TcGblEnv {

[...]
tcg_anns :: [Annotation]
tcg_ann_env :: AnnEnv

[...]

newtype AnnEnv = MkAnnEnv (UnigFM [AnnPayload])

Listing 31: The fields of the type checking environment tracking content of ANN
pragmas.
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The tcg_ann_env field is readily available for ApplicativeDo, but that resides in the
rename part of the pipeline, and the annotations are not present when we need them
since they are curated in the typecheck part of the compiler. The architecture of the
compiler is very complex; moving the management of annotations to an earlier stage,
if it is even possible, would be a major refactoring with a high probability of leading
to cascading problems that need to be fixed. Hence we deem it as an unviable path.
We can, however, add some specialised code that handles some of these annotations
early, looking for weights added with the pragma to top-level declarations directly
within ApplicativeDo. This is what we mean with the approach being a bit abusive
of the existing GHC code, ANN pragmas are not meant to be used in this way in the
current implementation.

3.3.2.2 Routing annotations to ApplicativeDo

The collection the annotations for the ApplicativeDo algorithm, explained in high-
level, begins with a linear search of the top-level declarations before the renaming
phase, placing the collected annotated binders and associated payloads in a data
structure made available to the algorithm. We use the existing TcGblEnv and scrape
the AST for relevant annotations ourselves.

Specifically, scraping for annotations is done in the function tcRnModuleTcRnM,
in the TcRnDriver module, as displayed in (the heavily stripped and simplified)
code listings below. TcRnDriver is a module residing in the Typecheck part of the
pipeline, and tcRnModuleTcRnM is very close to the entry point of the type checker,
which in an early phase applies the renamer. The functions slurpTopLvlAnns and
stripAndFilterAnn traverses the top-level expressions of the AST, picks the data
constructors apart and looks for annotation data. This is not as computationally
heavy as it sounds since we do not recurse into expressions but only consider top-level
binders.

First, we extend the global typechecker environment record, TcGblEnv, with a field
for collected annotations:

data TcGblEnv = TcGblEnv {

[...],
tcg_ann_from_parser :: [(AnnProvenance RdrName, HsExpr GhcPs)]
}

Listing 32: Extension of the global typechecker environment type, TcGblEnv.

Then, in tcRnModuleTcRnM, we implement the scraping and run it before the envi-
ronment is passed to the renamer:

-— AnnProvenance 1s a representation of the binder name
-— HsEzpr represents the annotation payload
type StrippedAnnD = (AnnProvenance RdrName, HsExpr GhcPs)
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s —— | Traverses the top level declarations in the module, finds
6 —— annotations and returns the annotated binding together with
7 —— the payload expression.

s slurpTopLvlAnn :: HsModule GhcPs -> [StrippedAnnD]
o slurpTopLvlAnn hsModule = let 1HsDecls = hsmodDecls hsModule in
10 stripAndFilterAnn 1HsDecls

11

12 —-— [ Strips location wrappers and collects content from ANN
13 —— declarations from the top level declarations; we do mot
14 —— traverse deeper into the AST.

15 -

16 —— HsDecl has a constructor 'AnnD (AnnDecl name)', where
17 —— 'AnnDecl name = HsAnnotation (AnnProvenance name)'

18 - "(Located (HsExzpr mame))'
19 stripAndFilterAnn :: [Located (HsDecl GhcPs)]

20 -> [StrippedAnnD]

21 stripAndFilterAnn = foldr unwrapAnnD []

22 where

23 unwrapAnnD :: Located (HsDecl GhcPs) -> [StrippedAnnD]
24 -> [StrippedAnnD]

25 unwrapAnnD (L _ (AnnD (HsAnnotation _ annProv 1HsExpr)))
26 annDecls = let L _ hsExpr = 1lHsExpr in

27 (annProv, hsExpr) :annDecls

28 unwrapAnnD _ annDecls = annDecls

29 -— T Not interested in anything else, so we skip any other
30 -- declaration

31

32 tcRnModuleTcRnM :: HscEnv -> HscSource -> HsParsedModule

33 -> (Module, SrcSpan) -> TcRn TcGblEnv

32 tcRnModuleTcRnM hsc_env hsc src

35 (HsParsedModule {

36 hpm_module = L loc hmod,

37 hpm src_files = src_files

38 )

39 (this_mod, prel_imp_loc)

w0 = setSrcSpan loc §$

41 do { []

42 tcg_env <- getGblEnv ;

13 setGblEnv (tcg_env {

44 tcg_self boot = boot_info ,

45 tcg_ann_from_parser = slurpTopLvlAnn hmod

46 ) $do [...]

Listing 33: Scraping and storage of top level annotations for the typechecker
environment.
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Now that the annotations are available as a field in TcGblEnv, they are within reach

from the main function of ApplicativeDo:

rearrangeForApplicativeDo
:: HsStmtContext Name
-> [(ExprLStmt GhcRn, FreeVars)]
-> RnM ([ExprLStmt GhcRn], FreeVars)
rearrangeForApplicativeDo _ [] =
return ([], emptyNameSet)
rearrangeForApplicativeDo _ [(one,_)]
return ([one], emptyNameSet)
rearrangeForApplicativeDo ctxt stmtsO = do
hscAnns <- tcg_ann_from_parser <$> getGblEnv
-— 7 Get the annotations from the environment

[...]

Listing 34: Easy access to scraped annotations in ApplicativeDo algorithm,

collected from a TcGblEnv instance at line 10.

3.3.2.3 Looking up weights in ApplicativeDo

The content of the ANN pragmas needs to always refer to renamed binders; this is
a result of a transformation taking place in Rename, a part of the compiler that
resolves local binder names to fully qualified ones. This is needed because many of
the optimisations in the simplifier need to know exactly which module binders point
to. One example of where this knowledge required is cross-module and cross-package
inlining, a process where GHC substitutes function calls with the implementing code,
a central optimisation technique putting a dent in the overhead of function calls in

tight loops.

There are different kinds of names in the compiler, each with their own purpose.

o OccName is the simplest form of a name, and simply represent names as a string
and from which namespace that it came. Namespaces could be for example

value, type constructors or data constructors.

o RdrName comes directly from the parser and contains a OccName, together with
an optional module qualifier. It is not yet processed by the renamer and could

therefore be ambiguous with other RdrNames.

e Name is unique and have both scope and binding resolved. They also contain

a OccName, which are not unique.

The data structure of weights and names in the ApplicativeDo algorithm is a
simple list of pairs of function name together with individual weight expression.
The list contains values of type RdrName, meaning the names are not unique, but
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as the list only contains top-level annotations from within the same module, this is
not a problem since multiple definitions are anyway illegal. For faster lookups, the
list is converted to a Map with the OccName from the RdrName as keys, and weight
expressions as values.

The function that uses the weights in ApplicativeDo is mkStmtTreeOptimal; it
needs to be able to lookup possible weight information for the statements it treats.
Since the ANN pragmas are only used for top-level annotation, a statement in a do-
block cannot be annotated. Therefore we only consider the top-most identifier on the
right side of a bind or in a bind-less statement, called body statement. An identifier
could either be a function application or a variable. The function getCurrentName
looks up the name of the statement currently handled:

-— Gets the mame of the current statement
getCurrentName :: Int -> Maybe Name
getCurrentName stmIndex = getStmNameMaybe (stmt_arr ! stmIndex)
where
getStmNameMaybe :: (ExprLStmt GhcRn, FreeVars) -> Maybe Name
getStmNameMaybe (L _ (stmtLR), _) = case stmtLR of
-— stmtLR :: StmtLR GhcRn GhcRn (LHsEzpr GhcRn)
-- data StmtLR <s defined in HsExpr.hs
(BodyStmt (L _ expr) _ _ _) —> getExpNameMaybe expr
(BindStmt _ (L _ expr) _ _ _) -> getExpNameMaybe expr
_ —> Nothing
getExpNameMaybe :: HsExpr GhcRn -> Maybe Name
getExpNameMaybe (HsApp (L _ expr) _) = getExpNameMaybe expr
getExpNameMaybe (HsVar (L _ name)) = Just name
getExpNameMaybe _ = Nothing

Listing 35: Finding a top-level name for a statement in a do-block

Since both Name and RdrName contains an OccName field, their OccNames are suitable
for a comparison between the two data types. Therefore, a weight map can be
constructed with the key in the form of an OccName with the data of the weight
of an expression. After checking that it is, in fact, a valid weight annotation, the
annotation payload is converted into an integer value which can be used by the
ApplicativeDo algorithm. The implementation of how these weights are accessed
for a certain statement is shown in Listing 36, and can be compared to the ease of
use in the other approach (shown in Listing 28).
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-— The map with wetights from the annotations is in scope as
-- weightMap :: Map (AnnProvenance RdrName) (HsEzpr HcsPs)

getCurrentWeight :: Int -> Maybe Integer
getCurrentWeight i = join $ getWeightFromWeightExpr <$> getWeightExpr i

where

-— Does a lookup in the weight-map with the name,

-- converted as a OccName, of the current statement
getWeightExpr :: Int -> Maybe (HsExpr GhcPs)

getWeightExpr i = join $ (flip Map.lookup weightMap .

<$> getCurrentName i
-- Converts a weight ezxzpression into a weight integer wvalue
getWeightFromWeightExpr :: HsExpr GhcPs -> Maybe Integer

getWeightFromWeightExpr (HsPar (L _ exp)) = getWeightFromWeightExpr exp

-- 7 Remove parentheses

nameOccName)

getWeightFromWeightExpr (HsApp (L _ varExp) (L _ valExp))
-—- Eztracts the ANN data type and check that it <s a Weight
| maybe False isValidWeightRdrName $ extractRdrName varExp

= getWeightFromWeightExpr valExp

-— T Get the integer wvalue
-— If the ANN data type is something else nothing ts returned

| otherwise = Nothing
getWeightFromWeightExpr (HsOverLit overLit) =
case ol_val overLit of -- Convert to integer
HsIntegral i -> Just $ il _value i
_ -> Nothing
getWeightFromWeightExpr _ = Nothing

extractRdrName :: HsExpr GhcPs ->
extractRdrName (HsPar (L _ e))

-— 7 Remove parentheses
extractRdrName (HsVar (L _ name))
extractRdrName _

Maybe RdrName

extractRdrName e

Just name
Nothing

Listing 36: Finding the binder name for the right side of a statement found in a

do-block.
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3.4 Hacking on GHC

The Glasgow Haskell Compiler is a complex beast and setting up a development
environment can be a bit tricky. In Appendix E we document a well working setup
for upstream tracking source control, as well as setting up a properly optimised build
environment locally. This was not entirely straightforward and the information was
deemed useful by us for future theses focusing on GHC.

3.5 Compiler plugins

The GHC plugin system at first seemed particularly suitable for collecting data
from source annotations. Collecting data from source annotations via a GHC plugin
would have been a nice way to avoid having to make many changes to the compiler.
Unfortunately, the plugin system is too constraining, even with the big extension
proposal® that is currently under consideration.

This led to the conclusion that refactoring out things to a plugin, while still having
to do GHC changes specific to that same plugin, is simply not viable. Hence,
the implementation was moved inside the compiler. To document these apparent
shortcomings we elaborate on this approach in Appendix D, even though the final
solution does not make use of the plugin system. The appendix is useful as a working
example of how the extended plugin system can be used since there are no other
examples or tutorials to be found at the time of writing (and are sparse even for the
vanilla plugin system).

The issues were raised with the GHC developers for insight to the development of
the proposal at GitHub®, and taken up for further discussion on Phabricator”.

Shttps://ghc.haskell.org/trac/ghc/wiki/ExtendedPluginsProposal

Shttps://github.com/ghc-proposals/ghc-proposals/pull/107#
issuecomment-380806941

"https://phabricator.haskell.org/D4342#128964
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4

Results

This thesis documents improvements to a certain model of implicit parallelism in-
ference in GHC. A typical use of the system is shown in a working context in Sec-
tion 4.2, followed by evaluation and performance tests in Section 4.3. The following
is a summary of our contributions:

o An extension of the ApplicativeDo algorithm to work with non-unit state-
ment costs in do-blocks, for more efficient parallelisation of monadic code.

» Two possible solutions on how to get costs specified by optional weight an-
notations in the source code to the relevant place in the compiler, each with
their own advantages and drawbacks.

o A description of how to use Hax1 for general parallel computation instead of
only remote data fetching. This shows our improvements are applicable to
more than just remote data fetching.

o Documentation of research practicalities on GHC, for the sake of future theses
based on the compiler.

4.1 Contribution results

This section elaborates on the actual contributions of this thesis. The accompa-
nying code can be found at GitHub !. Our commits are interleaved with merged
upstream changes from the GHC developer team, but a branch comparison shows
our changes by themselves 2. There is also a Docker container available for easy ex-
perimentation®, with a pre-compiled GHC sporting our changes and a pre-configured
Cabal package skeleton. In the root directory of the container there is a README. txt
explaining how to work with the package.

'Project code repository: https://github.com/mOar/ghc/tree/weighted-do-stmts

2Summarized GHC changes: https://github.com/tweag/ghc/compare/
5b63240£9822507a33bca6c5c05462832a9f13ab. . .mO0ar:weighted-do-stmts

3Project container: https://hub.docker.com/r/thune/ghc-weighted-do-stmts/
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4. Results

4.1.1 ApplicativeDo improvements

Our ApplicativeDo algorithm with an extended cost model successfully generates
expressions with more implicit parallelism, when accurate cost information is sup-
plied. Considering representative costs of statements, the algorithm makes better
decisions and returns programs with more tactical dependencies that prioritise plac-
ing heavy computations independent of each other instead of in sequence, where
possible. This increased implicit parallelism leads to faster execution of some Haxl
programs, as shown in Section 4.3.2.

Our changes to the compiler never (with the small caveat explained in Section 6.1)
affect the program performance negatively, nor does it have any measurable impact
on compile time compared to the original ApplicativeDo with the compilation flag
-foptimal-applicative-do.

Particularly noteworthy is that our implementation is a general improvement, and
agnostic to the source of costs; they could come from any source, but we have
evaluated the path of optional programmer annotations.

4.1.2 Costs from programmer annotations

Two different approaches of getting cost information from source code annotations
to the ApplicativeDo algorithm have been presented. The solution utilising the
ANN pragma is least intrusive to Haskell, but is slightly abusive of a GHC feature
that is actually used for other things later in the pipeline. It also allows the addition
of weight annotations where they have no effect, and refactoring of statements out
to top-level is required.

The other approach, which is based on the parser, is less hacky, but requires changes
to the language grammar and lexical analysis. On the other hand, it allows a
smoother implementation of the rest of the functionality. Additionally, weight an-
notations are only syntactically correct on relevant do-statements and can be placed
there directly without any refactoring.

Neither can infer the weight from a function call; this is a limitation and a direction
for further work.

4.1.3 Parallelisation with Haxl

We show how to use Haxl for getting automatic parallel execution of other things
than data fetching; this style of coding is a bit contrived, but shows that our im-
provements are not only applicable to remote data fetching, but also for scheduling
of top-level parallelism for other types of computation as well.
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The currently published version of Hax1l does not allow the user to prioritise paral-
lelism over batching behaviour. Improvements in implicit parallelism are therefore
not always used by Haxl; in some cases it can even worsen performance. However,
the in-development version makes prioritisation of parallelism possible, allowing our
improvements to shine.

4.1.4 Documentation of GHC research practicalities

As stated earlier, this thesis is also meant to be useful as a guide for future MSc
theses based on GHC, since the official documentation on internals can be a bit
confusing and scattered. The appendix therefore includes documentation of:

o How to set up and work with collaborative GHC Git forks.

e Details on the Phabricator development tools and experimental branches, in
combination with external git hosting.

o The use of compiler plugins, including the largely undocumented novel plugin
system.

o The build system, with possible configurations and useful tricks.

A mixed bag of details on the compiler pipeline.

4.2 System demo

Here we will look at a practical example of how the system is used. Consider this
Hax1 program; it does not perform as well as expected and some of the operations
are known or suspected to be more computationally heavy than others.

do x1 <- a
x2 <- b x1
x3 <- ¢
x4 <- d x3
x5 <- e x1 x4

return (x2,x4,x5)

Listing 37: Example do-block from Marlow et al. [6].

Without having to specify the execution order manually, annotations can be added
to the heavy computations to give the compiler more information to work with for
how to parallelise the expression, as shown in Listing 38. This can yield a dif-
ferently structured expression from ApplicativeDo, prioritising on isolating heavy
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do x1 <- a
x2 <- b x1 {-# Weight 4 #-}
x3 <- ¢
x4 <- d x3
xb <- e x1 x4 {-# Weight 2 #-}
return (x2,x4,x5)

Listing 38: Example do-block from Marlow et al. [6], with added weight
annotations.

statements from others with applicative operations, opening up for more efficient
parallel runtime evaluation. How this affects the code generated within the compiler
is shown in Section 4.3.1, together with performance improvements using Haxl in
Section 4.3.2. It is possible to get worse performance by using non-representative
weights, but ease of use encourages experimentation.

The running time of this particular example is 4.56 seconds without ApplicativeDo,
improved to 3.67 seconds with the original implementation (24% speedup), and again
improved to 2.75 seconds with correct costs. This is an improvement of 66% from not
using ApplicativeDo at all, and of 33% compared to the original ApplicativeDo.

4.3 Evaluation

In this section, we show the results for analytic and empirical evaluations, as de-
scribed in Section 3.2. The analytic is a theoretical evaluation where the algorithm
is performed manually and the total costs for different weight configuration are
scrutinised. The empirical evaluations consist of running programs using Hax1 over
independent runs, each with different weight configuration of statements, comparing
the new and old ApplicativeDo algorithms.

4.3.1 Analytic evaluation

As described in Section 3.2, given a do-block, numerous valid rearrangements can be
derived without breaking any dependencies. The method for deriving the rearrange-
ments was described in Section 2.2.1, in which an example of a weight distribution
is used to find an optimal rearrangement. In that specific example we can see a
distinct improvement factor, but this is not always the case; therefore, an analytic
analysis to get a better understanding is performed.

For a given program, each statement is given either weight 1, 2 or 4 and all combina-
tions are tested exhaustively. To see how much improvement is gained compared to
the original algorithm, we compare the optimal rearrangement for the weighed case
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to the rearrangement from the original ApplicativeDo. The weights correspond to
actual run-time, this is because we evaluate the improvements to ApplicativeDo,
not the weight annotation method which may can indeed be inaccurate. As stated
in Section 3.1, the improved ApplicativeDo is agnostic to the source of costs, and
programmer annotations is just one way to supply them.

To find which of the rearrangements the original ApplicativeDo returns, we com-
pare the order in which each statement is running to the rearrangements. This
process is time-consuming, and hence we do this analysis for two test programs
only.

4.3.1.1 Program one

This program is the do-block from Marlow et al. [6], which we have used throughout
this thesis.

do x1 <- a
x2 <- b x1
x3 <- ¢
x4 <- d x3
xb <- e x1 x4

return (x2,x4,x5)

Listing 39: Example do-block from Marlow et al. [6].

The do-block in Listing 39 gives the candidate solutions in Figure 4.1. These four
rearrangements are the only valid derivable solutions of the program in Listing 39.
Further splitting will give equal or less parallelism and is therefore not shown. The
solution selected by the original ApplicativeDo algorithm is the rightmost figure.
By exhaustively testing the different weight configurations we get the improvement
factor distribution that is shown in Figure 4.2.

A

B A BiDE A B
'C D E c C D

A B!C D E

[ (Q
L4 L4

¥

Figure 4.1: Execution graphs of candidate solutions after a single split, shown as
a dotted line, with columns indicating available parallelism.
Segments on different lines are independent, so in the first, solution
B can be run in parallel with C-D-E.

In 11% of the cases we can see an improvement over the original ApplicativeDo,
and in the remaining 89% we keep the original rearrangement. Hence, performance
is never worse given that the weights correspond to execution time.
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Figure 4.2: In 11% of the cases, our algorithm outperformed ApplicativeDo.
This is the distribution of the improvements.

4.3.1.2 Program two

This program, shown in Listing 40, is slightly bigger and has a more complex de-
pendency structure than the first.

do x1
x2
x3
x4
x5
x6

g © H T Qo

x1

x1

x2

x1 x3

x1 x3 x5

return (x4,x6)

Listing 40: Example do-block for analytic evaluation.

The five rearrangements in Figure 4.3 are the only valid derivable solutions of the
program in Listing 40. Further splitting will give less parallelism and are therefore
not shown. The rearrangement returned by the original ApplicativeDo algorithm
is the rightmost solution. By exhaustively testing the different weight configurations
we get the improvement factor distribution shown in Figure 4.4.
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Figure 4.3: Execution graphs of candidate solutions after multiple splits, shown
as a dotted lines, with columns indicating available parallelism.
Segments on different lines are independent, so in the top left
execution graph, solution F' can be run in parallel with E-G.
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1.05-1.7 1.3-115 1.15-1.2 1.2-1.25 1.25-1.3 1.3-1.35 1.35-14 14-145

Improvement factor

Figure 4.4: In 33% of the cases, our algorithm outperformed ApplicativeDo.
This is the distribution of the improvements.

Here, in 33% of the cases give an improvement. The remaining 67% keeps the original
rearrangement and thus performance is never worse than the original algorithm,
given that the weights correspond to execution time.

4.3.1.3 Effects of incorrect costs

The previous evaluation worked under the assumption that the cost and evaluation
time for an expression matched. Since performance is affected by faulty costs, an
evaluation of the maximal decrease in performance is described in this section. The
source of these costs is arbitrary, and different techniques for getting them may have
different accuracy.

As in the previous evaluation, for a given program, each statement is given either
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weight 1, 2 or 4 and all combinations are tested exhaustively. To see how much the
performance can decrease compared to the original algorithm, the worst possible
rearrangement for the weighed case is compared to the original ApplicativeDo
rearrangement.

Figures 4.5 and 4.6 show the maximal decrease factor for program one and two,

respectively.
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Figure 4.5: For the same weight distributions tested earlier, this figure shows the

Percent of tesis

performance decrease factors for the worst possible desugarings of
program one.

Maximal decrease factor

Figure 4.6: For the same weight distributions tested earlier, this figure shows the
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4.3.2 Empirical evaluation

As described in Section 3.2.2, Hax1 can be used for arbitrary computation, not only
remote data fetching. We define pure benchmarking functions with a fixed evaluation
time; these functions are combined in do-blocks and then desugared by the improved
ApplicativeDo. A series of experiments will test the performance of a Hax1 program
containing functions with scalable complexity, so each test instance has a different
computational complexity of each statement. Each program is compiled using both
our improved and the original ApplicativeDo, and the runtime performance is
compared in 15 random statement weight distributions on a 2-core CPU (Intel Core
i5-4210U @ 1.70GHz). For reproduction purposes, the evaluation time factors in the
15 tests are listed in Table 4.1.

4.3.2.1 Tests for program one

This program is the do-block from the Marlow et al. [6], which is a simple do-block
used throughout this thesis.

do x1 <- a
x2 <- b x1
x3 <- ¢
x4 <- d x3
xb <- e x1 x4

return (x2,x4,x5)

Listing 41: Example do-block from Marlow et al. [6].

Compiling and running the program using the 15 different weight distributions with
and without the improvements in ApplicativeDo, we get the following result:
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Figure 4.7: Test 4, 13 and 15 gains significant improvements compared to the
original.

4.3.2.2 Tests for program two

This program, shown in Listing 40, is slightly bigger and has a more complex de-
pendency structure than the first.

do x1 <- a
x2 <- d x1
x3 <- b x1
x4 <- f x2
x5 <- e x1 x3
x6 <- g x1 x3 x5

return (x4,x6)

Listing 42: Example do-block for analytic evaluation.

Compiling and running the program using the 15 different weight distributions with
and without the improvements in ApplicativeDo, we get the following result:
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Figure 4.8: Both tests 9 and 12 have a significant improvement in runtime while
tests 13 and 14 have significantly worse performance. The reason for
this is elaborated upon in Section 6.1.

4.3.2.3 Tests for program three

This program is a permutation of 14 functions each named a-n. The dependencies
for each function is randomly selected from the previously bound variables. This
results in a large and, from our part, unbiased program well suited for a test.

do x1 <-
x2 <-
x3 <-
x4 <-
xb <-
x6 <-
X7 <-
x8 <-
x9 <-
x10 <-
x11 <-
x12 <-
x13 <-
x14 <-
return

C
b
d
n
a
k
1
f
m
e
i
g
h
J
(

x1
x2
x1

x1
x1
x5
x6
x2
x4
x1
x5
x4
X7,

x2 x3

x3 x5
x3 x6

x5
x10
x5 x8

x5 x10 x13
x9, x11, x12, x14)

Listing 43: A permutation of functions a-n with randomised dependencies.

Compiling and running the program using the 15 different weight distributions with
and without the improvements in ApplicativeDo, we get the following result:
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B ApplicativeDo Improved ApplicativeDo

Run time (seconds)

Weight configuration

Figure 4.9: Tests 2, 3, 4, 5, 11, 12 and 14 have a significant improvement in
runtime. Test 15 has worse performance; the reason for this is
elaborated upon in Section 6.1.

Test |la b ¢ d e f g h i j k 1 m n
1 |1 21 2 2 2 2 1 4 4 4 4 1 1
2 114 2 2 414 2 112 1 1 4
3 |4 44 4 2 1 4 41111 11
4 14 4 1 1 21 4 1 4 4 41 1 2
5 |4 4 4 2 4 1 1 2 1 4 21 2 1
6 (4 4 4 1 4 2 2 4 2 2 4 4 2 2
7T 12 2 2 2 41 4 2 411 4 4 4
§ 12 1 1 2 2 11 2 12 4 2 2 1
9 |2 2 4 4 2 4 2 4 1 1 2 4 4 2
10 (2 4 4 4 2 2 4 2 11 4 1 4 2
111 1 4 1 4 4 2 4 4 4 2 1 1 2
12 14 4 4 1 1 4 2 112 4 2 1 2
3 /2 41 2 2 114 411 4 1 2
4 121 2 1 4 2 112 2 42 1 1
(1 4 1 21 2 14 4 2 2 1 2 2

Table 4.1: Evaluation time factor for functions a,b...n
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Related Work

5.1 Inferring type size

The paper Automating Sized-Type Inference and Complezity Analysis [9] gives a
model for inferring a size of a computation in its type. A common example of such
a sized type is a vector with type-level size, as found in the fixed-vector package.!
The paper constructs a new type system with size analysis capabilities and type
inference rules for the same, but in particular a ticking monadic transformation is
further developed; it was first introduced in the paper Denotational Cost Semantics
for Functional Languages with Inductive Types [10]. The idea is to use an indezed
monad, where the types allow for an additional parameter that can be incremented
every time the value is involved in a computation.

This can be used as an approximation of the run time complexity of a program, which
is of relevance to this project. This estimate is not directly translatable to the wall-
clock time requirement of a computation but does give a complexity indication; this
could be useful as inferred weights for the desugaring in ApplicativeDo.

Avanzini and Lago [9] implements this in an abstract language, but Gissurarson
started some work on a Haskell implementation during his MSc thesis, where this
basic ticking transformation is applied to monadic computations [11]. However,
limitations in the Haskell type system prevented this to mesh neatly with ordinary
monads, as described by him in the GHC proposal issue at GitHub.?

5.2 Thunk-based implicit parallelism

In the paper Feedback Directed Implicit Parallelism [12], Harris and Singh develop a
system for automatic parallelism in Haskell programs by investigating GHC thunking
behaviour during profiling. The idea is to have a pool consisting of a low-priority
worker-thread per physical core instead of the original GHC thunking behaviour.

lfixed-vector: https://hackage.haskell.org/package/fixed-vector-1.1.0.0
20verloadedDo proposal: https://github.com/ghc-proposals/ghc-proposals/pull/78
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5. Related Work

These can steal thunks from other threads, using core idle time for automatic parallel
evaluation of expressions.

These thunks, however, are of high value to evaluate in parallel only if they are
heavier than the overhead of book-keeping the whole process. To decide on whether
or not a thunk might be worth evaluating in parallel, they track the CPU cycle
counter for thunk allocation sites in a profiling run, selecting series of thunks with
a high mean evaluation time for speculative parallelism. This two-fold approach is
what the paper title refers to with feedback directed.

The paper presents both a simulated limit study with real-world constraints such
as the number of cores, cache and memory behaviour, et cetera ignored to find an
upper limit to what the approach can theoretically allow, as well as actual empirical
comparisons with the GHC 6.6 spark implementation using par. The limit study
shows great promise. In the practical setting the method in the paper has a great
deal of overhead, so for small thunk sizes, it is easily outperformed by the original
thunk sparking mechanism. After a certain average thunk size, however, feedback
directed implicit parallelism reaches a near-optimal speedup.

The reasons for the increased overhead is that with work stealing there are problems
that need to be mitigated: preventing IO to be executed in a different order than
intended, managing the speculative worker threads, organising the pool of sparked
thunks, and handling thunk locks to prevent duplicate evaluation. The last of which
is a particularly interesting improvement to the vanilla sparking behaviour since it
minimises the risk of fizzled sparks. Both approaches work well between certain
ranges of thunk sizes, so the paper concludes that a combination probably would
work well in most cases.

Our work prioritises structuring code generated from do-blocks, if the evaluation
of a resulting <x> operator then has more cost-balanced arguments, we believe this
could positively impact the effect of the system described in the paper.

5.3 Schemik: an implicitly parallel language

Petr Krajc¢a and Vilém Vychodil have through a series of papers investigated a lan-
guage evaluation model for implicit parallelism. In Data Parallel Dialect of Scheme:
Outline of The Formal Model, Implementation, Performance [13] we find a descrip-
tion of Schemik, a strict, stack based, implicitly parallel functional language with
an execution model based on a pushdown automaton.

During interpretation of a program, an independent scheduler entity sifts through
the execution stack for things deemed suitable for parallel evaluation, spawning
lightweight threads for this purpose. There is an accompanying implementation
showing the feasibility of the project available on the project home page at Source-

62



5. Related Work

forge3. The representation of the evaluation semantics by an automaton allows
proving determinism of programs, independently of scheduler parallelisation.

In Software Transactional Memory for Implicitly Parallel Functional Language [14],
this model is further extended with software transactional memory (STM) to al-
low parallelisation of programs with side-effects. STM does not have to be used
directly by the programmer but is used in the backend during evaluation. This
is used to make sure each parallel evaluator has consistent memory during execu-
tion: when a parallel job is done executing, memory changes are committed to the
program-global memory through STM, which through a case-analysis handles pos-
sible collisions. The most severe such collision is when a parallel thread has written
to something during reads from a later thread. This is resolved by re-running the
later computation with a new STM snapshot of the state, since the real evaluation
order is specified by the order of arguments. The paper does no extensive analysis
of the time consumption of this approach, but a small handful of benchmarks show
positive indications.

In Incremental JIT Compiler for Implicitly Parallel Functional Language [15], a
Just-In-Time (JIT) compiler is added to the model. The basis of doing so is that
the interpreted nature of Schemik has heavy overhead, and by doing on-the-fly com-
pilation of assumed costly expressions, great speedups are gained. This evaluation
of compilation-worthiness is not described to any bigger extent, but is said to be
based on: lists, or lists fulfilling further criteria, such as containing sub-lists or
user-defined functions.

5.4 Data parallel languages

The area of data parallel languages is growing, and related to this thesis in the
way they enable working with parallel computation with low programmer overhead.
However, these languages can seldomly be referred to as widely-adopted, general
purpose languages in contrast to Hasklell. The NESL [16] language was one of the
pioneering ones that allow nested data parallelism primitively and a similar approach
has been taken by the more recent developments of Futhark [17], which has extended
the possibilities in an impressive fashion.

Data Parallel Haskell [18] is a project aiming to enable nested data parallelism for
multi-core CPU computation in Haskell. There is basic support, but the project
has since run out of funding; hopefully, community efforts allow this development to
continue. Accelerate [19] brings data parallel GPU computation to Haskell through
high-level array operations but does not support nested parallelism, additionally it
requires explicit use of parallel computation functions.

NVIDIA has also done advances in this field with the functional, data parallel lan-

3Shemik project page: http://schemik.sourceforge.net/
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guage NOVA [20]. NOVA shows impressive performance for both multi-core CPUs
as well as GPUs but is always compared to CUDA C and parallel C, in the setting
of raw computer graphic algorithms.
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Benchmarks in the evaluation section show that the extension of the ApplicativeDo
cost model indeed allows for greater performance in many cases. In general, it seems
our enhancements give better results with more complex do-blocks; more statements
and dependencies means more possible solutions to decide between.

The analytic tests of programs in sections 4.3.1.1 and 4.3.1.2 both show improve-
ments, but the longer program outperforms ApplicativeDo in three times as many
cases. The empirical evaluation also seems to support this hypothesis; the shorter
programs in sections 4.3.2.1 and 4.3.2.2 show significant improvements to execu-
tion time in 20% and 13% of the cases, respectively, while in the longer program
evaluated in Section 4.3.2.3 we see it in 53% of the cases.

6.1 Peculiar data points in evaluation

There are a few places of particular interest in the empirical data; here we will
discuss these cases.

Test program 2 Running the program in Section 4.3.2.2 sometimes show worse
performance when desugared by our algorithm, specifically in cases 13 and 14. We
scrutinised the generated code in these cases, and found that the two algorithms
return different rearrangements that represent the same cost. We get different re-
arrangements because of the split optimisation shortcut described in Section 3.1.1;
the shortcut does not trigger in our algorithm in these cases.

The reason that the vanilla ApplicativeDo code then runs faster in this case is that
it happens to trigger a performance optimisation later in the simplifier; the shortcut
in ApplicativeDo does not affect runtime by itself and is just a way to speed up
the desugaring algorithm.

It is possible that this effect is hidden in more of the test cases, creating some noise
in the data; there is however no reason to suspect that this is not equally likely to
happen the other way around. For the particular cases above this explanation was
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verified by turning off GHC optimisations, but re-running all of the tests would be
too time-consuming so this argument will have to suffice.

Test program 3 In test case 15 we see a slight decrease in performance with the
code desugared by our algorithm. This program is more complex, and the desugarer
generates a segment with three statements connected by applicatives. Hax1 schedules
this in three threads, and our test machine only has two cores. This slight worsening
is therefore explained by threading overhead.

6.2 Weight annotations

The optional programmer weight annotations work well in practice. Particularly the
implementation based on the GHC lexer and parser is neat to use. This part of the
thesis was investigated for two purposes:

« Enabling a way to provide correct costs for evaluation of the new and improved
ApplicativeDo algorithm.

» Exploring the practicality of using programmer annotations to affect an un-
derlying model for implicit parallelism.

The first purpose was fulfilled nicely; by defining functions with known relative
computational costs and annotating them accordingly, a fair evaluation of the im-
provements of ApplicativeDo could be done.

For the second purpose, the conclusion is that annotating is a nice method of af-
fecting the implicit parallelism from the desugarer, with very little programmer
overhead. There are however some usability issues. Firstly, estimation of evaluation
times of Haskell expressions is notoriously difficult for a number of reasons. For one,
lazy evaluation makes it hard to figure out exactly when evaluations take place, if
at all. Another reason is that there are a lot of performance optimisations in the
compiler which are difficult to determine if they will trigger, and if so, how they are
going to affect the results. These are some examples of such automatic optimisations
that are difficult to predict:

» Fusion, the removal of intermediate data structures. This is also referred to
as deforestation.

o Common subexpression elimination, restructuring of code to prevent unneces-
sary evaluation of shared expressions.

o Inlining, preventing overhead from function calls by substituting the imple-
mentation.

o Strictness analysis, trying to figure out which expressions are definitely going
to be needed to bypass certain laziness overhead.
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6.2.1 Using GHC profiling for weight insights

To help mitigate the difficulty of estimating runtime requirements, the programmer
can make use of the GHC profiling tools!. This way one can do a test run of
the program without weights, inspect the relative evaluation times of the different
statements, add corresponding weights and see if it makes a difference.

Using the SCC pragma (abbreviation for "Set Cost Centre"), the programmer can
track the evaluation time of particular expressions.? This pragma can take an addi-
tional name parameter, making identification in the profiling dump easy.

6.3 When we see improvements

It seems that the extension of ApplicativeDo is more likely to give desired im-
provements over the original when desugaring a bit longer functions with several
possible rearrangements. From inspecting which particular weight configurations
indeed reach a lower cost in our algorithm in the analytic tests, we conclude that no
effect is seen when the weight distribution is close to uniform, because this works
similarly to the unit cost model. We can also see that in all of the cases that we do
see improvements, the weight distributions are uneven. This makes sense because
the bigger the relative difference between statements weights, the less accurate is
the unit cost model.

So we know do-blocks need to be somewhat complex for the improvements to shine,
but how does typical Haxl code look? Haxl is very new and there are no large
open-source projects using it at time of writing. However, mPowered Solutions® use
Haxl in one of their products, and have been kind enough to let us analyse parts
of their code base. Unfortunately, this project was not written in such a way that
it will be affected at all by ApplicativeDo. All data fetches are independent and
explicitly connected with applicative operations in big chunks. There is no need for
do-notation in the implementation, and they already get good performance from
Hax1 because the fetches are always independent.

Facebook is most likely the biggest user of Hax1l and the library was developed by
them. Unfortunately it was not possible to get access to production code, but in the
paper There Is No Fork [7] some statistics about the Hax1 code base at Facebook is
presented; Figure 6.1 shows some of these results. The data comes from running a
random sample of 10000 requests from the production system Sigma, a rule engine
used to detect malicious content.

L!GHC profiling: https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
profiling.html

2Cost centre profiling: https://downloads.haskell.org/~ghc/latest/docs/html/users_
guide/profiling.html#inserting-cost-centres-by-hand

3mPowered Solutions: https://mpowered.co.za/
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Figure 6.1: Hax1 statistics from Facebook. Re-published from There Is No
Fork [7] with author permission.

We can see that they all perform at least 10 fetches, but sometimes up towards 80.
The fetches are always performed in at least 2 rounds, but sometimes up to 11;
this indicates that there is indeed a lot of dependencies in the code, since otherwise
they could all be performed in the same round. The paper discusses relatively small
differences in latency between these requests, even though there are heavy outliers.
However, Marlow references use of Hax1 in a build system [21], which indeed seems
like a case with heavily differing time requirements for each operation.

From this we conclude that this industry application of Hax1 probably could benefit
from our improved ApplicativeDo.

6.4 Future work

In this section we will expand on ideas that would further explore the neighbourhood
of our work. Both ways to expand the annotative approach, as well as other sources
for costs, are proposed. In particular, benchmarking on actual production code
would be insightful, or at least on more parallel machines. Hax1 is still very new, so
there are unfortunately not much open-source code available.
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6.4.1 Function weight inference

As our implementation of weight annotation currently works, calling a function in
a do-statement cannot infer the weight from annotations in the definition of that
function. This would be a worthwhile extension of the current implementation, but
one thing is still unclear. Consider the code in Listing 44; since the weight annotation
used in subfunction are relative to its other statements, we are not sure of how to
use that total cost of 3, in relation to the statements in mainFunction.

subfunction :: GenHaxl a
subfunction = do
a <- something {-# Weight 2 #-}
somethinglighter a

mainFunction :: GenHaxl a
mainFunction = do
a <- subfunction
computeResult a

Listing 44: When inferring the weight of a function call in mainFunction,
whether it is fair to use the total cost of three from subfunction
depends on the relative weight of computeResult.

A possible path for inferring the weight from a function definition, that we did not
have time to explore, is through source-to-source transformations. The packages
haskell-src-exts* and haskell-names® can be used to parse and rename the
module while doing the additional analysis.

6.4.2 Type-based weight inference

The method of annotating as a basis for the cost model can, as described in Sec-
tion 6.2, be prone to error since a wrong estimate of run time can lead to a worsening
of ApplicativeDo. Therefore, other means of getting the cost information into the
ApplicativeDo algorithm would be an interesting research subject.

One way of getting weight information could be using sized typed functions; Krajca
and Vychodil saw good results when deciding upon speculative parallelism based
on the type of value [13]. Size information like that, found in Vector and similar
data structures, could help decide if parallel evaluation would be worth the effort.
Worth noting is that both laziness and infinite data structures complicate things in
the Haskell setting.

‘https://hackage.haskell.org/package/haskell-src-exts
Shttps://hackage.haskell.org/package/haskell-names
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Another way could be through size type inference, as explained in Section 5.1, where
a function with a greater inferred size may be given a greater cost and vice versa.
This is a very new, but nevertheless interesting path.

6.4.3 Investigating interoperation with thunk-based auto-
matic parallelism

The paper Feedback Directed Implicit Parallelism [12] presents a promising take on
implicit parallelism which may be affected by our improvements, as described in
Section 5.2. The system is implemented for GHC 6.6, before ApplicativeDo was
conceived. This is unfortunate because it is not possible to investigate how they
work together without porting the implementation to a more recent GHC version,
so further work is needed.

6.4.4 A more general library for executing implicit paral-
lelism

Currently, Haxl is, to our knowledge, the only library that can make use of the
implicit parallelism of applicative expressions. Unfortunately, Haxl can only make
use of implicit parallelism between operations encoded as data fetches with its prim-
itives. Since ApplicativeDo generates applicative expressions, new means of using
implicit parallelism could increase the usability for ApplicativeDo and would be a
step closer to fundamental automatic parallelism.

The task to make automatic parallelism is complicated even though the parallelism
is there for the taking, because of the well-known problems of overhead that occur
when parallel scheduling becomes too fine-grained. Perhaps a way to handle it in
this specific case could be through using a low priority thread per core together with
work stealing, in a similar way as described by Harris and Singh [12].

6.5 Conclusion

Our research questions, as presented in the introduction of Section 2.3, are:

o Can we extend the ApplicativeDo algorithm to make better decisions, given
information about statement evaluation cost?

o How can we provide the ApplicativeDo algorithm with this cost information,
with minimal programmer overhead?

For the former, we have shown how the cost model can be extended to work with
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non-unit statement costs. The results show that we indeed see improvements, both
under analytic reasoning and empirical, wall-clock runtime evaluation using Hax1.

For the latter, we have investigated the path of optional programmer weight anno-
tations on do-statements. It is a simple way to get cost information to the compiler
and ApplicativeDo algorithm, without having to do anything else than specify
the relative cost for the statement with a short pragma. The main issue with this
approach seems to be that estimating the actual evaluation time can be difficult
in Haskell, but experimentation is easy and the GHC profiling tools can provide
assistance.

As further work, we suggest both extensions to our annotative approach as well as a
direction using type analysis; this has been shown to be a promising approximation
in related research. To mitigate the risk of depending too much on a single solution
that may have its drawbacks, a suitable way forward may be a combination of the
two. We also hope to see further developments in parallel execution of independent
expressions like in Hax1, but in a more general setting. Perhaps interoperation with
thunk-based automatic parallelism is a particularly interesting path.
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A

Haskell language extensions

Haskell language extensions are used for enabling new features that are not present in
the base language. The GHC extension system is used for adding new functionality
without breaking the language specification!, a system put in place to solidify the
language API for longer periods of time to make it possible for several compilers to
coexist! This way GHC can still add novel features while still by default adhering to
the Haskell language specification. A compiler extension is enabled either by passing
a flag to the compiler:

ghc -XApplicativeDo -XGADTs

Listing 45: GHC flags.

or on a per-module basis with source code pragmas in the top of the file:

{-# LANGUAGE ApplicativeDo #-}
{-# LANGUAGE GADTs #-}

Listing 46: Examples of source code pragmas.

In this appendix, we explain the language extensions we use in this project, or which
are used in modules we work with in the GHC code base, in alphabetical order.

A.1 ApplicativeDo

The ApplicativeDo extension is explained in particular detail in Section 3.1.

"https://wiki.haskell.org/Haskell_2010
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A.2 BangPatterns

This extension enables strict pattern matching, in contrast to Haskell’s per-default
lazy evaluation. This means that instead of the usual behaviour where the evaluation
of a pattern match is deferred until the result is needed, the matched expression is
forced to evaluate to weak head normal form® — often the first constructor. The
difference in evaluation strategy can be seen in this example:

lazy :: a -> Int
lazy x = 5
strict :: a -> Int

strict Ix =5

> lazy undefined
5

> strict undefined
%% Exception: Prelude.undefined

Listing 47: The difference in evaluation semantics when using bang patterns.

Strictness is useful to avoid function evaluation building big lazy computations be-
fore actually evaluating them. Introducing some strictness can speed up execution
and lower the memory usage in some cases, but also make sure things actually do
happen when the function is executed and not until the function results are needed.
The latter is important when working with concurrent execution.

This extension is, in general, harmless but some care might be needed in some cases
not to force evaluation of an infinite computation where a lazy evaluation might
yield the expected result.

A.3 FlexibleInstances

This extension allows more liberal type class instance declarations, where the default
is very conservative. Natively, GHC only allows type class instance declarations of
this form:

instance Class (T al ... an) where

Listing 48: al through an are type variables and can only appear once in the
instance head

2https://wiki.haskell.org/Weak_head_normal_form
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The consequence is that the following instances do not pass typechecking — the first
uses nested constructors, the second additionally uses the same type variable twice
— but the FlexibleInstances extension makes both valid:

1 instance Class [Int] where

5 instance Class (SomeType a (IORef a))

Listing 49: Two type class instance declarations not possible without the
FlexibleInstances extension.

This extension is frequently and safely used; it cannot introduce ambiguity or over-
lapping of instance declaration that would confuse the type checker.

A.4 GADTs

This extension enables Generalised Algebraic Data Types, a very commonly used
feature of the type system. It allows constructors of an algebraic data type to yield
different types. The following kind of data type declaration is very practical, but
not allowed without GADTs since the type variable a is instantiated to different types
depending on the constructor:

1 data MyType a where
2 MyInt :: Int -> MyType Int
3 MyBool :: Bool -> MyType Bool

Listing 50: A generalised algebraic data type, where constructors can instantiate
the type variable a differently.

This is one of the most heavily used language extensions and is perfectly safe to use.

A.5 MultiParamTypeClasses

This extension enables writing type classes with more than one type in the instance
head. By default, Haskell only allows type classes with kind * -> *, meaning they
need a type to construct an instance of its type. The extension loosens this to an
arbitrary number of parameters. For example, in Haxl we represent a data source
with the following class definition head:

1 class (DataSourceName req, StateKey req, ShowP req) => DataSource u req where
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Listing 51: A multi parameter type class, enabled by this extension. DataSource
takes two type arguments, meaning it has the kind DataSource ::
X > k > %

As we can see, this type class requires two types to be instantiated: u is the type
of environment for global variables, and req is the type of request. This type of
declaration depending on several types would not be possible without the extension.

MultiParamTypeClasses is a problematic language extension that can easily intro-
duce problems in the type system in the form of ambiguity — when the type checker
cannot decide which instance to use — or undecidability, where the type checker is
no longer guaranteed to terminate when checking our types. These issues can be
addressed in several ways, including type families®, functional dependencies?, and

straight up allowing undecidable instances®.

A.6 MultiWayIf

This purely syntactic extension adds a new way to write compact pattern-matching
conditional expressions, instead of a chain of if-then-else expressions that are limited
to a single branch.

With MultiWayIf activated, we can write code with pattern-match predicates basi-
cally anywhere, like this:

f :: Int -> Bool -> String
f i False = "No result requested"
f i True show 1 ++ ": " ++
if | 1 < 10 -> "yes"
| i > 20 -> "no"
| otherwise -> "maybe"

A.7 OverloadedStrings

Dealing with the different types of string representations in Haskell can be quite
annoying since string literals always have the fixed type [Char]. This is different to
how integer (and other) literals are treated, with a polymorphic type: Num a => a.

3https://wiki.haskell.org/GHC/Type_families

‘https://wiki.haskell.org/Functional_dependencies

Shttp://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.
html#ghc-flag--XUndecidableInstances
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An integer literal can be used wherever anything from the Num type class is expected,
and this includes dozens of instances.

For strings, we sometimes want to use Text, ByteString, or other text data types.
Instead of using explicit casting functions from String everywhere, we can instead
use this extension to give literals the more general type Data.String.IsString a
=> a.

This extension is very common and safe. In certain circumstances, it can cause issues
with ambiguity, but in practice, the surrounding types define the target instance
precisely.

A.8 StandaloneDeriving

This extension allows deriving type class instances automatically, even if they are
not in the same file as the type class declaration, which is one of the constraints
otherwise. It also enables more complex derivations, particularly deriving instances
for GADTs, which is another limitation of standard Haskell instance derivation. It is
also possible to make instances with additional constraints not present in the data
type; this is impossible with the standard deriving keyword:

data MyType a = Constr a

deriving instance Eq a => Eq (MyType a)

Listing 52: An example of a stand-alone deriving clause for the Eq type class.
The instance is derived if the type wrapped has an Eq instance; this
"conditional instance" is impossible without the extension.

What we get from this is a free Eq (MyType a) instance for MyType whenever it
contains something that itself has an Eq instance. This extension is safe and cannot
introduce any particular problems.

A.9 TypeFamilies

Type families are a very powerful concept that vastly extends the Haskell type
system; covering the full power of the extension is out of scope for this section so
we will look at one example.

The Haskell type class construct is versatile but can be further extended in a natural
way with the use of type families. The examples below are lent from the excellent
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24 days of GHC extensions advent calendar.b

By themselves, a type class can be used to associate a set of functions with a certain
type:

class I0Store store where
newIO :: a -> I0 (store a)
getI0 :: store a -> I0 a
putI0 :: store a -> a -> I0 ()

This is nice, and we can create instances for different types of 10 storage (MVar and
I0Ref, for example), making it possible to write code that is polymorphic over the
specific type of store used:

instance IOStore MVar where
newlO = newMVar
getI0 = readMVar
putI0 mvar a = modifyMVar_ mvar (return . const a)

instance IOStore IORef where
newlIO = newIORef
getI0 = readIORef
putI0 ioref a = modifyIORef ioref (const a)

With this, we can create a function that works for different kinds of storage, using
the function from the type class above:

storeBooksIO :: IOStore store => [Book] -> IO (store [Book])

This is nice, but what if we would like to create an instance for TVar? Unfortunately:.
we have locked ourselves into working with stores in the I0 monad whereas TVar
lives in the STM monad, so this is not possible!

Fortunately, type families can help us by allowing us to associate a type with another
type; in this case, something of kind * -> * meaning a first order type constructor:

class Store store where

type StoreMonad store :: * -> x*

new :: a —> (StoreMonad store) (store a)

get :: store a -> (StoreMonad store) a

put :: store a -> a -> (StoreMonad store) ()

6Credit to Oscar Charles, published under a permissive Creative Commons license: https:
//creativecommons.org/licenses/by-nc-nd/3.0/
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Now the type class also forces you to specify what type you want StoreMonad to be
when creating an instance of it:

instance Store IORef where
type StoreMonad IORef = IO
new = newlORef
get = readIORef
put ioref a = modifyIORef ioref (const a)

instance Store TVar where
type StoreMonad TVar = STM
new = newlVar
get readTVar
put ioref a = modifyTVar ioref (const a)

Now our polymorphism is not limited over I0 storages, but different storage in
different monads too. We can use the same implementation as earlier with only a
slight change to the type of the function:

storeBooks :: (Store store, Monad (StoreMonad store))
=> [Book] -> (StoreMonad store) (store [Book])
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Discovery of unexpected GHC
behaviour

While working with the example shown in Listing 21 in Section 3.2.2.1, we tried dif-
ferent pure computations each with a heavy machine workload. We ran into a weird
issue with a big strict left fold (foldl’), where there is drastically different memory
consumption depending on whether or not there is an optional type annotation on
the statement.

foldl’ is characteristically used to avoid heavy memory load that can occur when
using the regular foldl: the runtime building very large chains of unevaluated
function applications, before applying the last argument and letting the whole thing
reduce. Instead, foldl’ strictly applies the function in between each step, yielding
a new value that can be passed to the next function. This avoids the thunking
behaviour which is so heavy on the RAM.

The following snippet shows the different evaluations steps of foldl versus foldl’;
the intermediate expressions of foldl needs to be stored somewhere, while foldl’
condenses into one integer that is passed along.

bad = foldl (+) 0 [1..5]

-> foldl (+) (0 + 1) [2..5]

-> foldl (+) (0 + 1 + 2) [3..5]

-> foldl (+) (0 +1 + 2 + 3) [4..5]

-> foldl (+) (0 + 1 + 2 + 3 + 4) [5]
-> foldl (+) (0 + 1+ 2+ 3+ 4 +5) []
->0+1+2+3+4+5

-> 15

good = foldl' (+) 0 [1..5]
-> foldl' (+) 1 [2..5]

-> foldl' (+) 3 [3..5]

-> foldl' (+) 6 [4..5]

-> foldl' (+) 10 [5]

-> foldl' (+) 15 []
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-> 15

However, when designing a prototype for mocking computations as Hax1l data fetches
we encountered very odd memory behaviour with foldl’. Extra expression type
annotations are optionally available in Haskell, and depending on whether or not this
was added to a certain statement in this snippet, the memory usage when running
the compiled program was vastly different. The following snippet is a minimised
example of where it occurs:

{-# LANGUAGE GADTs #-}
{-# LANGUAGE BangPatterns #-}

import Data.IORef
import Data.List

data Heavy a where
Mock :: Heavy Integer

{-# NOINLINE runHeavy #-}
runHeavy :: Heavy a -> IORef a -> I0 ()
runHeavy Mock var = do
-— This runs as expected:
let !n = foldl' (+) 0 [1..100000000] :: Integer

-- Without the type annotation it eats RAM like crazy
-- let In = foldl' (+) 0 [1..100000000]
writeIORef var n

main = do
ref <- newIORef O
runHeavy Mock ref
readIORef ref >>= print

The profiling information for running with and without the type annotation is shown
below. Interestingly, the version without type signature actually runs a bit faster
but the runtime allocates a whopping 5.6 GB of additional RAM.

-- With type annotation
3,200,051,784 bytes allocated in the heap
Total time 2.328s ( 2.350s elapsed)

-- Without type annotation
8,800,051,816 bytes allocated in the heap
Total time 2.148s ( 2.167s elapsed)
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This is surprising when using a function that is supposed to be a particularly
memory-friendly fold. It is unclear if this is "odd but intended optimisation" or
a bug; the issue is raised with the GHC developers.



The GHC compilation pipeline

Parse

HsSyn RdrName

Rename
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Figure C.1: A visualisation of the compilation pipeline, showing the order of
compilation stages [22].
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The GHC plugin system

GHC supports compiler plugins in the form of additional core-to-core passes, ap-
plying optimisations through repeatedly running transformations of the internal
language representation (a tiny language called Core). This happens in the Simplify
stage (see appendix C); in a compiler plugin the annotations are readily available,
but it is long after ApplicativeDo has finished.

In addition to core plugins, it is also possible to write plugins for the type checker.
This enables extensions to the constraint solving algorithm that is used internally to
verify that types are indeed correct. Examples of type checker plugins include a Nat-
solver for type level natural number constraints, and a type level implementation of
units of measure, enabling the type checker to prevent you from adding a meter to
a Newton, for example. The problem is the same with type checker plugins as with
core; they are active too late in the compilation pipeline.

The (simplified) interface for writing a plugin is shown in code listing 53. A plugin
should implement these functions, where some out of them may do nothing. The
function installCoreToDos allows insertion of an external core pass (a CoreToDo)
into a specific point of simplifier pipeline, and tcPlugin allows you to return a
TcPlugin which can extend the constraint solving capabilities of the GHC type
checker.

data Plugin = Plugin {
installCoreToDos :: [CoreToDo] -> CoreM [CoreToDo]
, tcPlugin :: Maybe TcPlugin
}

Listing 53: The interface of a GHC compiler plugin that allows extension of the
simplifier and constraint solving capabilities of the type checker.
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D.1 Usage of compiler plugins

A compiler plugin can be activated with a command line flag after it is built, made
into a Cabal package and registered in the system (see Section D.3.1). The flag
-fplugin Plugin activates the plugin provided by a module Plugin, and the flag
-fplugin-opt Plugin:arg can be used to pass an argument arg to the plugin.

For the plugin developed in Section D.3, usage in compilation with a locally built
compiler looks like this, from the location of the module we want to compile:

$ .../ghc/inplace/bin/ghc-stage2 -fplugin EarlyAnnPlugin Module.hs

D.2 Extended plugins proposal

There is a current GHC proposal called Extended plugins proposal'>? that aims to
generalise the current plugin system to enable plugins for earlier stages than the
type checker and simplifier. The (simplified) extended plugin interface is shown in
code listing 54 below.

data Plugin = Plugin {
installCoreToDos :: [CoreToDo] -> CoreM [CoreToDo]
, tcPlugin :: Maybe TcPlugin

—-— Proposed additions below

, parsedResultAction :: HsParsedModule -> Hsc HsParsedModule
, renamedResultAction :: Maybe(RenamedSource -> Hsc ())

, typeCheckResultAction :: TcGblEnv -> Hsc TcGblEnv

, spliceRunAction :: LHsExpr GhcTc -> TcM (LHsExpr GhcTc)

, interfaceloadAction :: ModIface -> IfM 1lcl ModIface

b

Listing 54: The proposed extension of the plugin interface.

The following is a high-level explanation of the capabilities of each added function:

o parsedResultAction allows access and modification to the source before the
Rename stage. This can for example be used to print a little stack trace
for failing assert checks.®> This function is of particular interest to us for
collection annotation data.

"https://ghc.haskell.org/trac/ghc/wiki/ExtendedPluginsProposal

2Development branch with extended plugins: https://phabricator.haskell.org/D4342

3Suggestions enabling debugging assert: https://ghc.haskell.org/trac/ghc/ticket/
14443
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D. The GHC plugin system

o renamedResultAction enables inputting a read-only function that is run after
the Rename stage. This enables source analysis tools to grab the renamed
syntax before it is changed later in the pipeline.

o typeCheckResultAction allows modification of the type environment after
type checking. This would allow all kinds of type hackery, but no applications
are yet in sight.

« spliceRunAction enables modifications to Template Haskell* expressions be-
fore they are run. Basically, this allows metaprogramming of metaprogram-
ming.

o interfaceLoadAction allows modification of a module interface when it is
being loaded into another module. This is also useful for source analysis since
the tool can know for example which identifiers are from which modules.

The function parsedResultAction gives us access to what we need for inspect-
ing annotations before the Rename stage, and hence before ApplicativeDo. The
constructor chain that leads to what we want is shown in code listing 55 below.

parsedResultAction :: HsParsedModule -> Hsc HsParsedModule
-— RdrName ts a representation of source code identifier names
data HsParsedModule = HsParsedModule { ... ,

hpm _module :: Located (HsModule RdrName) }

data HsModule = HsModule { ... ,
hsmodDecls :: [LHsDecl name] }

type LHsDecl id = Located (HsDecl id)

data HsDecl id = ... | AnnD (AnnDecl id) |

-- HsExp ts any type of (in this case annotated)
—-— Haskell ezpression

data AnnDecl name = HsAnnotation (AnnProvenance name)
(Located (HsExpr name))

data AnnProvenance name = ValueAnnProvenance name |

Listing 55: The (stripped down) constructor chain that allows access to
annotations from parsedResultAction. Located is a simple type
that wraps information with source code position.

Through this series of data connections, we can dig up the annotation with a front

4Template Haskell: https://wiki.haskell.org/Template_Haskell
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end plugin, manually populate the global type checking environment (TcGblEnv)
with the information and thereby making it available in ApplicativeDo. The
AnnProvenance data type contains a representation of the binder name we annotate
in the source code and the HsExpr is the annotation payload.

D.3 Development of the compiler plugin for an-
notations

Using GHC patched with the implementation of the extended plugins proposal (how
this is done is explained in Section E.1.1), we can build a plugin with the brand new
functionality of the interface described in Section D.2. The plugin code is fairly
straightforward and presented in code listing 56.

module EarlyAnnPlugin (plugin) where

import GhcPlugins

import HsDecls (HsDecl(..), AnnDecl(..), AnnProvenance(..))
import HsSyn (hsmodDecls)

import HsExpr (HsExpr(..))

import HsExtension (IdP(..), GhcPs)

import TcRnMonad (getTopEnv, updTopEnv)

import HscTypes (hpm_ann from_parser)

import System.IO.Unsafe (unsafePerformI0)

-— | A compiler plugin must export a value of this type. We
-- take an "identity" plugin ('defaultPlugin’'), and replace
-— the 'parsedResultAction' field with our implementation:
-— 'prepareAnnotations’'.
plugin :: Plugin
plugin = defaultPlugin {
parsedResultAction = slurpTopLvlAnn
+

-- | Eztracts binders with payload from 'ANN' pragmas through
-— 'HsParsedModule' and adds them back to a specialised field
-— of the data type.

slurpTopLvlAnn :: [CommandLineOption] -> ModSummary
-> HsParsedModule -> Hsc HsParsedModule
slurpTopLvlAnn _ _ hpm = let annDecls = findAnnDecls hpm in

return $ hpm { hpm_ann_from_parser = annDecls }

type StrippedAnnD = (AnnProvenance RdrName, HsExpr GhcPs)
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-- | Traverses the top level declarations in the module, finds
-— annotations and returns the annotated binding together with
-— the payload expression.
findAnnDecls :: HsParsedModule -> [StrippedAnnD]
findAnnDecls hpm = let L _ hsModule = hpm_module hpm in
let 1HsDecls = hsmodDecls hsModule in
stripAndFilter 1HsDecls

-- | Strips location wrappers and collects content from ANN
-— declarations from the top level declarations; we do not
-— traverse deeper into the AST.
-— HsDecl has a constructor 'AnnD (AnnDecl mame)', where
-- 'AnnDecl name = HsAnnotation (AnnProvenance name)'
= "(Located (HsExzpr name))'
stripAndFilter :: [Located (HsDecl GhcPs)] -> [StrippedAnnD]
stripAndFilter = foldr unwrapAnnD []
where
unwrapAnnD :: Located (HsDecl GhcPs) -> [StrippedAnnD]
-> [StrippedAnnD]
unwrapAnnD (L _ (AnnD (HsAnnotation _ annProv 1HsExpr)))
annDecls = let L _ hsExpr = 1HsExpr in
(annProv, hsExpr):annDecls
unwrapAnnD _ annDecls = annDecls
-- 7~ Not interested in anything else, so we skip any other
-— declaration

Listing 56: Implementation of the compiler plugin. The function findAnnDecls
traverses the top level declarations of a parsed module, strips away
wrapping constructors and collects binder names and annotation
payloads.

D.3.1 Packaging and registration of the plugin

Cabal is the standard package management system for Haskell. When the plugin
builds, we need to make a Cabal package and register it with the system. This
makes it possible for the ghc binary to find the plugin when it is requested for use
in the compilation.

We first need a standard .cabal configuration file for a library package, this is
explained well in the Cabal documentation®. Unfortunately, Cabal uses the system
GHC installation to build our package, and since we need to use our patched compiler
it cannot proceed. Luckily, there is a newly developed build system for Cabal called

Shttps://www.haskell.org/cabal/users-guide/developing-packages.html#
example-a-package-containing-a-simple-library
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new-build. This enables a plethora of new configuration options, including one to
direct the build to use a particular path to a compiler executable.

We instruct Cabal to use our patched compiler with the with-compiler setting in
the global configuration; it is currently not possible to do this on a per-package
basis. This file usually resides in /.cabal/config.

[...]
with-compiler: /path/to/ghc/inplace/bin/ghc-stage?2
[...]

Then we can configure, build and register our package in our system so that ghc
can find it:

cd /path/to/PluginModule
cabal configure
cabal install

Now the plugin can be run in the way specified in Section D.1.

D.3.2 Limitations in the extended plugins proposal

The extended plugin proposal API was found to be too constraining to allow persist-
ing data in the compiler state for use later in the pipeline. The ‘parseResultAction’
plugin seemed like a good fit for implementing the catching of weights and stashing
them in the compiler state for later retrieval in ApplicativeDo. The entry point of
the algorithm works in the rename monad, RnM:

rearrangeForApplicativeDo
:: HsStmtContext Name
-> [(ExprLStmt GhcRn, FreeVars)]
-> RnM ([ExprLStmt GhcRn], FreeVars

RnM has access to the global type checking state, TcGblEnv, which in turn con-
tains the compilation state, HscEnv. The issue is that HscEnv is read-only within
parsedResultAction, and we do not have the TcGblEnv in scope. A possible
workaround for the issue is to put the collected data in a new field of the returned
HsParsedModule, but this needs to be moved to the TcGblEnv elsewhere in the com-
piler. This requires plugin-specific changes to the compiler internals, which makes
it hard to argue for extracting the functionality to a plugin in the first place.

As stated in Section 3.5, these issues were raised with the GHC developers for insight
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to the development of the proposal at GitHub®, and taken up for further discussion
on Phabricator”.

Shttps://github.com/ghc-proposals/ghc-proposals/pull/107#
issuecomment-380806941
Thttps://phabricator.haskell.org/D43424128964
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Hacking on GHC

The Glasgow Haskell Compiler is a complex beast and setting up a development
environment can be a bit tricky. Here we document a well working setup for up-
stream tracking source control, as well as setting up a properly optimised build
environment locally. This was not entirely straightforward, and the information was
deemed useful for future theses working on GHC.

E.1 Setup up a GHC fork with Git

To enable working collaboratively and version controlled on the GHC code base, we
set up a Git fork of the upstream GHC repository. This way we can stay in sync
with the main development, while still adding our improvements. This can be stored
at any git host, but we chose to fork the GHC repository on GitHub! and created a
new branch to work on.

Then, we clone the GHC repository mirror from GitHub in a directory of our choice:

$ git clone https://github.com/ghc/ghc

Because of different naming conventions in GHC and GitHub we need to give git
some extra pointers on where to find certain files. This updates global Git settings
and needs to be done only once.

$ git config --global url."git://github.com/ghc/packages-".instead0f
git://github.com/ghc/packages/

$ git config --global url."http://github.com/ghc/packages-".insteadOf
http://github.com/ghc/packages/

$ git config --global url."https://github.com/ghc/packages-".instead0f
https://github.com/ghc/packages/

$ git config --global url."ssh://git\@github.com/ghc/packages-".instead0f

"https://github.com/
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ssh://git\Q@github.com/ghc/packages/
$ git config --global url."git\@github.com:/ghc/packages-".instead0f
git\@github.com:/ghc/packages/

GHC has a large number of project dependencies linked as Git submodules®>. When
first setting up, we need to populate the project with files from these dependent
projects with the git submodule command.

$ cd ghc # The directory of our newly cloned compiler
$ git submodule update --init

Now the GHC code base is all set up, but we do not have write access to the official
GHC repository. Hence, we need to add our own repository on GitHub as a remote

for Git.

$ git remote add {git username}
https://github.com/{git usernamel}/ghc.git

$ git fetch {git username} {development branch name}

$ git checkout {development branch name}

If the git status command then indicates changes to files in the submodules,
there may have been version changes to the dependencies upstream. This is fixed
by running git submodule update, which does a checkout of the correct snapshot
of the relevant submodules.

Now, our local repository knows about both our own repository, as well as the official
GHC one. This means we can stay in sync with upstream while storing our own
changes somewhere else.

E.1.1 Working with Phabricator Differentials

GHC uses a software development platform called Phabricator® for things like Git
hosting, planning, continuous integration, and particularly code review. Contribu-
tions that are above trivial in complexity has to be through Differential?, a system
for code review, discussion, and merging of code contributions.

The issue with our Git setup is that it is based on a fork of the GHC GitHub mirror,
while the project is really hosted with Phabricator. This poses no issues until we
need to work with experimental branches from this platform, as is the case with the
Extended Plugins Proposal discussed in Appendix D. This in-development branch

’https://git-scm.com/book/en/v2/Git-Tools-Submodules
3The Phabricator platform: https://www.phacility.com/phabricator/
4The Differential module: https://www.phacility.com/phabricator/differential/
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is not officially merged, and is hence absent from the main development branches,
and therefore not mirrored to GitHub. Phabricator uses a tool called Arcanist® to
pull these differentials into the local development setup, but this requires working
in a repository having Arcanist setup; this is not the case in the GitHub mirror.

Fortunately, all differentials on Phabricator are available as a raw Git diff, a file
containing instructions for Git on how to apply the changes locally to a code base.
It specifies which rows have which changes, for each file affected by the differential.
When the file is downloaded, applying the diff is simple from a clean Git directory:

$ git apply D4342.diff
$ git commit -am "Applying raw diff of D4342"

Now our local project has the proposed changes from the differential, and we build
the patched GHC as described in E.2 with no differences. If we do not want the
changes anymore, for example, if they get merged to master or they don’t do what
we had hoped, we can undo the patch by finding the commit with git log, and
revert the commit. This is easily done if the patch commit message mentions the
differential ID since it will be easy to find:

$ git log --grep "D4342"

commit b0462e864£719d9c7bl41cdbbbc2cb513a1c247d
(HEAD -> improved-ado, mOar/improved-ado)

Author: Edvard Hiibinette <edvard@hubinette.me>

Date: Mon Feb 19 11:18:14 2018 +0100

Apply raw diff of D4342 (ExtendedPluginsProposal)

$ git revert b0462e864£f719d9c7b141cdbbbc2c5513a1c247d

E.2 Building GHC

Now the code is in place, and we would like to compile our compiler. This is a
time-consuming process, but we can take some shortcuts to get our building done
faster. In the ghc/mk directory there is a sample build file, build.mk.sample,
that can edited and saved to build.mk. Inside, there are a plethora of options
for the build process. The recommended full build mode is quick, which builds
everything, including dependencies but excluding profiling versions of everything,
which is unnecessary at this point.

When this is done, we prepare the build.

5The Arcanist tool: https://www.phacility.com/phabricator/arcanist/
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$ ./boot
$ ./configure

Then run make to start the build process. We can speed it up further by telling
make about extra cores so that it can do some work concurrently.

$ make -j{\# physical cores + 1}

When this finishes, the usable compiler can be invoked. It can be used both as a
normal compiler, but also as GHCi with the -interactive flag.

$ ghc/inplace/bin/ghc-stage2 file.hs
$ ghc/inplace/bin/ghc-stage2 --interactive file.hs

E.2.1 GHC stages

GHC is built in stages, and depending on what you are trying to achieve you do not
have to build all of them; it is possible to prevent the build system from compiling
stages later than the one you need in mk/build.mk. This is useful to ensure a quick
under-development build cycle, only spending time on necessities. The notation of
stages is somewhat confusing, and are therefore explained here.

Stage 0 is the system GHC. You use the stage 0 compiler to make your GHC source
code into the stage 1 compiler. The stage 1 compiler has your added changes.
However, it is not built with a compiler sporting your changes; the features you
added to GHC have not been used to improve the compiler itself. Stage 1 does not
support GHCi or Template Haskell (a way of doing compile-time meta-programming
with Haskell).

When using the stage 1 compiler to build the same source code again, the result
is the stage 2 compiler: your compiler compiled with itself. Next is stage 3, where
stage 2 is used to build GHC once again to verify that it is functioning properly.
This stage is what is used for running all GHC tests, verifying that changes did not
break anything.

E.2.2 Further build configuration

In mk/build.mk there are several settings to lock the build process to stop after
the required stage. For example, if we are working on features that do not need to
be present when building GHC itself, we can enable the devel2 build profile. This
locks the stage 1 compiler, meaning a rebuild only compiles the second stage; your
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changes will be present when compiling programs, but the compiler itself will not
be built with them.

If we want to use the GHC profiler, for example, to get information on actual
weights on statements of a program, we need to add the BUILD_PROFS_LIBS = YES
flag to the build configuration. This is so GHC builds the base library with profiling
enabled, a necessity for profiling of other programs to work.
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