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Aging clocks have provided one of the most significant recent breakthroughs in the biology of aging. 

Such clocks allow the determination of chronological and increasingly also biological age, which is 

prerequisite for assessing the effectiveness of interventions in the aging process and preventive 

treatments of age-related diseases. The most advanced aging clocks are based on age-dependent 

changes in DNA methylation pattern. The reproducibility of such changes over the life course has 

reinvigorated the debate whether a programmed process underlies aging. A programmed aging 

process, however, is incompatibly with the evolutionary theory of aging. Aging occurs as a 

consequence of a vanishing force of selective pressure post-reproduction as no fitness benefit is 

provided by immortality of the soma. In fact, stochastic events have been observed to increasingly 

occur during the aging process. Here, we test whether aging clocks could be built with entirely 

stochastic variation. We find that accumulating stochastic variation is sufficient to accurately predict 

chronological and biological age. Moreover, current aging clocks are entirely compatible with 

random alterations in the methylation or transcriptomic patterns. Our analysis unifies the clock 

measure of aging with the evolutionary theory of aging and predicts that any set of data that have a 

ground state at the age zero with accumulating stochastic variation could be used for building 

accurate aging clocks.  

Introduction 

Weismann 1 proposed in 1882 that aging might be programmed to benefit a population of species by 

freeing up resources taken by older individuals. The hypothesis of a programmed aging process, 

however, was later largely rejected 2–5, for a range of reasons such as the circularity of the argument 

and the underlying assumption of group selection. Instead, evolutionary theories of aging realized the 

vanishing force of natural selection post-reproductively, i.e. once the progeny carries on the genetic 

information, further maintenance of the parental individuals would have little fitness contribution. 

Most clearly, this has been stated in the disposable soma theory of aging but also the mutation 

accumulation and the antagonistic pleiotropy theories recognized the lack of a fitness contribution of 



old individuals leading to the accumulation of gene variants that can have detrimental effects at older 

ages as those variants are not counterselected against 2,6. These theories are in line with the 

insufficiency of maintenance and repair processes that leads to stochastic damage accumulation with 

aging thus causing the functional decline of the organism 7. Recent progress on aging clocks, however, 

has revived the idea of a potential program involved in aging 8,9. Currently, it is controversially 

discussed whether aging is purely a stochastic entropy-driven event in line with the evolutionary 

theory of aging or whether the existence of aging clocks could show a causal relationship to aging 10,11. 

Epigenetic drift has been observed during aging and was assigned to imperfect maintenance of 

epigenetic marks 12. Such a drift might reduce methylation differences between genomic regions that 

are defined during development over time 13. It has been proposed that age-coupled stochastic 

methylation changes are highly genome context specific 14, and that an information-theoretic view of 

DNA methylation pattern explains the observed stochasticity in line with context-specific maintenance 

energy consumption 15. Indeed, early analyses with differential equations showed that CpG 

methylation sites can be modelled based on maintenance rates, which define the CpG site-specific 

equilibria 16,17. This stochastic epigenetic drift has been shown to be conserved across species and 

attenuated upon caloric restriction 18. 

To deepen the mechanistic understanding of epigenetic aging clocks, Levine et al. deconstructed 

epigenetic clock CpG sites from 12 different clocks into distinct modules and showed that while some 

modules might be driven by entropic alterations and regress to a methylation state of 0.5, most might 

be distinct and changing systematically with time 19. Recently, Tarkhov et al. showed that aging single-

cell DNA methylation changes are predominantly affected by a stochastic component 20, and that a 

single stochastic variable (thermodynamic biological age) can track entropic aging 21. 

Here, we show that in principle any dataset that can be normalized to values between 0 and 1, 

containing accumulating stochastic variation can be used to build a predictor suggesting that any set 

of biological measurements could be used to build accurate aging clocks. We determine that the pace 

of aging is primarily set by the degree of stochastic variation, where increased stochasticity accelerates 

while reduced stochastic variation decelerates the predicted age. We further determine that current 

epigenetic aging clocks measure how much stochastic variation accumulated. We show that the 

predictive results of a model trained on simulated data with accumulating stochastic variation 

correlates significantly with the chronological age of human DNA methylation samples. We validate 

our findings in a transcriptomic dataset of C. elegans, and show that predictions of the most accurate 

transcriptomic aging clock correlate significantly with the number of times stochastic variation was 

added to the simulated data. Finally, we show that the predictive results of simulated transcriptomic 

data with accumulating stochastic variation significantly correlates with the biological age. Taken 

together, we establish that aging clocks could be based on any biological parameter and that precise 



aging clocks are compatible with the evolutionary theory of aging. No deterministic process is required 

but instead stochastic age-related alterations allow the precise measurement of aging.   

Results 

Data-type independent predictions 

To investigate whether a stochastic process is sufficient to build an age predictor of any dataset, we 

used purely simulated random data. We set the simulated age range between 0 and 100, and defined 

a random ground state, i.e. a starting point as a state at the beginning of an individual’s life. The ground 

state is motivated by reports showing a tight global regulation after the beginning of life starting with 

the zygote stage on the transcriptome 22, proteome 23, and epigenome 24 level, in addition to the 

recently proposed ground zero of organismal life and aging 25. For our first simulations, we simulated 

2000 random data points (features) uniformly distributed between 0 and 1 that we defined as the 

ground state. Features in prediction models can be any quantifiable data type such as for example 

methylation data. To model variation in the ground state, we varied the features slightly for each 

simulated sample by adding stochastic variation to each feature that was drawn from a normal 

distribution with a mean of 0 and standard deviation σ of 0.01, i.e. 𝑁𝑁(µ = 0,𝜎𝜎2 = 0.012). With these 

parameters ~99.7 % of noise values are within the interval [-0.03, 0.03]. To test whether accumulating 

normal-distributed stochastic variation over time would allow building a predictor of the simulated 

age, we added normal-distributed stochastic variation independently to all features in the ground state 

1 to 100 times, i.e. while each sample started from the same ground state (including slight variations 

as described above), the normal-distributed stochastic variation is added independently (Figure 1A, 

see methods for details). For example, for a sample with simulated age 2, stochastic variation would 

be added twice to the ground state. The stochastic variation addition was performed independently 

from all other samples, i.e. ground state + 1x stochastic variation sampled from the normal distribution, 

+ 1x stochastic variation sampled from the normal distribution. A sample with simulated age 10 is 

simulated by taking the ground state and adding, independently sampled, normal-distributed 

stochastic variation 10 times (Figure 1A). The amount of stochastic variation added to each feature 

was drawn from a normal distribution with a mean of 0 and standard deviation σ of 0.05, i.e. 

𝑁𝑁(µ = 0,𝜎𝜎2 = 0.052) . With these parameters ~99.7 % of noise values are within the interval [-0.15, 

0.15]. Since the stochastic variation distribution is the same for all samples and time-steps, older 

samples are noisier, i.e. more divergent from the ground state. We simulated 6 sets of samples ranging 

from stochastic variation applied once to applied 100 times, reflecting a potential lifespan range. Note 

that the range from 1-100 was chosen arbitrarily. We used 3 sets of 100 samples (one sample per 

simulated age) to train an Elastic net regression that predicts the simulated age, i.e. the number of 



times stochastic variation was added. To validate the model, we used the 3 independent validation 

samples, i.e. samples that started with the same ground state but that added independent normal-

distributed stochastic variation from the same distribution 𝑁𝑁(µ = 0,𝜎𝜎2 = 0.052) (Figure 1B). As 

expected, accumulating normal-distributed stochastic variation without limits does not allow for any 

predictor to be build and the validation samples do not show any trend in the data (Figure 1C). The 

stochastic variation application in each time-step is independent from all other and therefore contains 

negative and positive values equally likely, which will lead to a cancellation of stochastic variation on 

average and subsequent neither a trend nor a prediction. We, therefore, next used random feature 

values within a range limitation between 0 and 1 because, in principle, all types of quantifiable 

biological parameters could be normalized to values between 0 and 1. Using the same approach as 

above but limiting the values between 0 and 1 after adding the stochastic variation, i.e. not allowing 

features to go below 0 or above 1, surprisingly allowed for an almost perfect prediction with a Pearson 

correlation of the independent validation data of 0.99 (p-value 2.42e-241) (Figure 1D). Of note, the 

ground state in Figure 1C and D is comparable and only containing random values between 0 and 1 for 

each feature. Thus, the model found pattern in the simulated data that allowed the prediction of how 

often stochastic variation was added to the ground state (the simulated age) even in data not used 

during the training process. Importantly, this will potentially work for any dataset, since our simulated 

starting point (ground state) consists of uniformly random data between 0 and 1, and the stochastic 

variation added at each time-step is randomly chosen from a normal distribution, i.e. does not require 

any regulation or program.  

The prediction accuracy of the independent validation data was robust to the distribution from which 

stochastic variation was sampled for the training and validation samples (Figure 1E). Even predictions 

in which the age-related stochastic variation per time-step was smaller than the stochastic variation 

with which we varied the ground state for each sample (𝑁𝑁(µ = 0,𝜎𝜎2 = 0.012)), showed high 

accuracy, e.g. the model trained on stochastic variation sampled from 𝑁𝑁(µ = 0,𝜎𝜎2 = 0.0052) per 

time-step still had a median R² of 0.79 for the prediction of the independent validation data (Figure 

1E). This indicates, that even a small amount of accumulating stochastic variation per time-step is 

enough for an accurate prediction, e.g. stochastic variation sampled from 𝑁𝑁(µ = 0,𝜎𝜎2 = 0.0052) 

contains 99.7% of all sampled values in the interval [-0.015, 0.015] with a mean of 0.  

During training, Elastic net regression assigns a coefficient to each of the 2000 features that then can 

be used to predict novel independent samples. The Elastic net regression coefficients for the 2000 

features in our simulation in Figure 1D are highly reproducible in between independent runs, as long 

as the ground state (including slight variations as described above) is the same (Figure 1F), indicating 

that even random stochastic variation pattern allow for robust predictions. The prediction is possible 



due to a regression to the mean, which is to be expected from a stochastic process with a data range 

limit (Figure 1G). Features starting close to 0 or 1, cannot go below, respective beyond, their respective 

limits, resulting on average after adding random stochastic variation to a regression towards 0.5. 

Features starting close to 0, therefore, tend to increase after stochastic variation addition resulting in 

a positive Elastic net coefficient, while features close to 1 tend to decrease resulting in a negative 

coefficient. Features starting around 0.5 in the ground state are more noise sensitive since the added 

stochastic variation is equally likely to move in either direction leading on average to a cancellation of 

noise (Figure 1G). Thus, features with a ground state close to 0.5 won’t allow a robust trend in the data 

and therefore won’t add any information to the prediction model.  

The number of features of the ground state has an effect on the model accuracy: The prediction 

accuracy of the amount of normal-distributed stochastic variation plateaus after ~1000 features at an 

R² value around 0.97, showing that even models with a limited number of features are highly accurate 

in predicting how often normal-distributed stochastic variation was added to the ground state of 

independent validation samples (Figure 1H). Of note, Elastic net regression shrinks coefficients of some 

features to 0 and thereby further reduces the number of features. These results show that 

reproducible predictions are possible with less than 1000 features as long as there is accumulating 

stochastic variation and the data can be normalized between 0 and 1, i.e. predictions are not limited 

to DNA methylation or transcriptomic data. 

We next wondered how a model trained on stochastic variation sampled from 𝑁𝑁(µ = 0,𝜎𝜎2 = 0.052) 

would predict samples with different stochastic variation distributions. Choosing a standard deviation 

twice as large (σ=0.1), also doubles the interval to [-0.3,0.3] from which ~99.7 % of stochastic variation 

values are sampled, which increases the amount of stochastic variation added in each time step. 

Testing the model on data simulated with more stochastic variation per time step resulted in a faster 

increase and plateau of the prediction, while a reduced stochastic variation level decreased the slope 

of the prediction (Figure 1I). Samples with more stochastic variation per time step reach their 

maximum simulated age earlier. This analysis suggests that an increase in stochastic variation 

accelerates, while a decrease in stochastic variation decelerates the predicted aging process. 

The simulations in Figure 1 did not restrain the stochastic variation accumulation aside from keeping 

the features between 0 and 1. Stochastic variation was sampled from the same normal distribution, 

regardless of the starting values in the ground state. Adding normal distributed stochastic variation 

once in this set-up does not change the simulated sample much from the ground state (Supplement 

Figure 1A), while adding stochastic variation 100 times leads to a uniform distribution of features 

(Supplement Figure 1B). Biological data on the other hand will contain features, e.g. CpG methylation 

levels or gene expression levels, that are under higher maintenance and less noisy. Comparing 



biological DNA methylation data of young and old subjects shows that features, i.e. methylation sites, 

starting close to the extremes (0 or 1) tend to be stronger maintained and show therefore less variance, 

i.e. potential stochastic variation (Supplement Figure 1C). 

Empirically estimated stochastic variation in bulk DNA methylation  

Next, we wondered whether our simulations would be applicable to data with accumulating stochastic 

variation that is sampled from empirically estimated stochastic variation distributions. To empirically 

estimate biological stochastic variation levels, we first estimated the stochastic variation distribution 

of data points between DNA methylation samples of 2 young subjects one year apart (16 and 17 years). 

We used DNA methylation data because the most widely used aging clocks are based on CpG 

methylation data. As shown in Supplement Figure 1C the DNA methylation sites close to 0, or 1, have 

low variance between young and old samples, while most of the differences in DNA methylation lie in 

the middle of the data distribution. Estimating the variance between subjects over all data points 

therefore would over-estimate the variance close to 0 and 1. Instead, to empirically estimate the 

variance/ stochastic variation distributions we divided the data into quantiles based on their DNA 

methylation level in the youngest sample (Supplement Figure 1D). For each of these quantiles, we 

estimated the distribution of the differences between the samples of the 2 young subjects that are 

one year apart (see methods for details) (Supplement Figure 1E,F). We chose samples from subjects 

one year apart from each other to estimate the amount of stochastic variation accumulating within a 

year. Note that this will overestimate the amount of stochastic variation since age-independent 

interindividual DNA methylation differences are not excluded. Using a similar approach as in Figure 1, 

we simulated 6 datasets with samples of simulated age 1-100, with the difference that we started the 

ground state with the youngest DNA methylation sample (GSM1007467) in the public dataset 

GSE41037 26 instead of uniformly random data. The accumulating stochastic variation was not sampled 

from a normal distribution, but from empirically estimated distributions based on quantiles of the DNA 

methylation data distribution of the youngest sample (Supplementary Figure 1D-F, see methods for 

details). All number of quantiles tested allowed for accurate age predictions of the independent 

validation data (Supplement Figure 1G,H). The number of quantiles, i.e. the number of stochastic 

variation distributions, did not have a strong effect on either the predictions (Supplement Figure 1G) 

or the distribution of features after adding noise 100x (Supplement Figure 1I). These results show that 

empirically estimated stochastic variation distributions still allow for a prediction, however, this 

approach still over-estimates the overall amount of stochastic variation in the data, as can be seen in 

the comparison of the data distributions in Supplement Figure 1C and I.   



Single-cell simulations 

To improve the simulations of stochastic variation for DNA methylation data, we simulated instead of 

bulk data between 0 and 1, “single-cell” data for which each feature is binary, i.e. either methylated 

(1) or unmethylated (0) (Figure 2A). Pfeifer et al. showed that the methylation pattern at single CpG 

sites can be modelled with differential equations containing a methylation maintenance efficiency 

(𝐸𝐸𝑚𝑚) (the probability that a methylated site stays methylated), and a de novo methylation efficiency 

(𝐸𝐸𝑑𝑑) (the probability that an unmethylated site gets methylated; 1 − 𝐸𝐸𝑑𝑑 is the maintenance efficiency 

of the unmethylated state (𝐸𝐸𝑢𝑢)) 16. These maintenance efficiencies describe the rate by which a CpG 

site does not alter per time-step. Using 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  we simulated single-cell DNA methylation changes 

over time as depicted in Figure 2A. We started with bulk DNA methylation data from a young sample 

(2000 randomly chosen CpG sites from GSM1007467 26  as the ground state) and generated 1000 cells 

per CpG site that average up to the bulk DNA methylation rate, i.e. a bulk DNA methylation value of 

0.13 would be defined as 130 cells being methylated (1), and the remaining 870 cells being 

unmethylated (0). Next, we randomly alter the state of every single-cell CpG site based on the 

respective 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  values for each time step., i.e. for each time-step we flip a coin with the 

probabilities 𝐸𝐸𝑚𝑚 (to stay methylated) and 𝐸𝐸𝑑𝑑  (to de novo methylate) for each CpG site in each cell. For 

training and validating a predictor, we again computed the average bulk methylation levels for each 

site and time-point. The training and validation process of the Elastic net regression is the same as 

described in Figure 1B. 

First, we tested how a universal maintenance efficiency rate, i.e. the same rate for all features, for 500 

features would affect the accuracy of the model (Figure 2B). A high maintenance efficiency for both 

methylated and unmethylated states for all simulated CpG sites (𝐸𝐸𝑚𝑚=99.9%, 𝐸𝐸𝑑𝑑=0.01%, i.e. 𝐸𝐸𝑢𝑢=99.9%) 

allowed for almost perfect simulated age predictions with an R² of 0.999 of the independent validation 

data (Figure 2B, C). This is surprising since the sample of simulated age 100 shows almost no deviation 

from the ground state (Supplement Figure 2A). Even maintenance rates of up to 99.995% (for which 

we expect only 25 of the simulated 500*1000=500.000 cells to change state in each time-step) resulted 

in a prediction with an R² of 0.78 in the independent validation data (Figure 2B). The predictor is robust 

in the number of features, i.e. DNA methylation sites, allowing for highly accurate age predictions with 

small feature sizes, whose accuracy cap after around 32 features (Figure 2D). Similar to Figure 1I, 

training the model on a maintenance rate of 99.9 % per site and testing it on data simulated with lower, 

respectively higher maintenance rates, showed that less maintenance leads to a quicker increase in 

the age prediction, i.e. accelerates the aging clock, while higher maintenance reduced the predicted 

age (Figure 2E). These results indicate that even a high maintenance rate for all simulated features 



allows for highly accurate age predictions, and that an increase in maintenance decelerates biological 

aging, while a decrease in maintenance would accelerate the aging process. 

Since everything except a 100 % maintenance rate would lead to a regression to the maintenance rate-

specific equilibrium for each site 16, we wondered whether a prediction would be possible if we set the 

starting values for each feature in the ground state to the maintenance rate-specific equilibrium before 

applying stochastic changes to the data. A maintenance rate of 99.9 % for methylated as well as 

unmethylated sites leads to a regression to the mean, i.e. 0.5 is the equilibrium state, irrespective of 

the starting value of each feature in the ground state. Unsurprisingly, starting the simulation with 0.5 

for each feature and a 99.9% maintenance rate for each feature, i.e. CpG site, did not allow for a 

prediction of the simulated age, since no regression to the equilibrium state is possible 

(Supplementary figure 2B). However, just a slight deviation to 0.51 for all starting values in the ground 

state led to an accurate simulated age prediction via a regression to the equilibrium state, i.e. the mean 

(Supplementary Figure 2C). 

Each CpG site might have a different maintenance efficiency and likely factors as accessibility, DNA 

sequence context, histone modifications, and protein binding affect 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑14,17,27. Therefore, we 

empirically estimated the maintenance efficiency of each CpG site from data of an old subject. 

According to Pfeifer et al.16 the equilibrium of the methylation state 𝑀𝑀𝑒𝑒𝑒𝑒 is reached at 

 𝑀𝑀𝑒𝑒𝑒𝑒 =  
𝐸𝐸𝑑𝑑

1 + 𝐸𝐸𝑑𝑑 − 𝐸𝐸𝑚𝑚
 [1] 

 
. Pfeifer showed that one can then estimate 𝐸𝐸𝑚𝑚 from equation [1] for a given equilibrium state. DNA 

methylation trends towards the site-specific equilibrium over time 16,17. We, therefore, estimated that 

the data of the sample from the oldest subject in the dataset are closest to the site-specific equilibria. 

While the measurement of maintenance efficiencies is not straight forward, several groups have 

estimated the biological range of site-specific 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑 values. Pfeifer et al. estimated 𝐸𝐸𝑚𝑚 to be ~99.9 

% and 𝐸𝐸𝑑𝑑  to be ~ 5 %, i.e. the maintenance of unmethylated regions 𝐸𝐸𝑢𝑢 is ~95 % 16, Riggs et al. 

estimated the average 𝐸𝐸𝑚𝑚 to be 95 % and for many sites bigger than 99 % 17, and Laird et al. estimated 

𝐸𝐸𝑚𝑚 to be between 95-98 % and 𝐸𝐸𝑑𝑑  to be maximally 23 % 28. We set maintenance levels based on these 

publications to 𝐸𝐸𝑚𝑚 > 95 % and 𝐸𝐸𝑑𝑑 < 23 %. To estimate the site-specific 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  values for the DNA 

methylation dataset, we set the site-specific DNA methylation equilibrium to be the value of the oldest 

sample in the dataset (GSM1007832 26) and estimated 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  within the limits defined above. This 

is only a rough approximation of the site-specific equilibria, but the closest available at the moment. 

Similar to the universal maintenance model in Figure 2B-D, highly accurate simulated age predictions 

are possible if 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  are empirically estimated from data (Figure 2F). The predictions most likely 

cap off earlier than in Figure 2C since most empirically estimated maintenance rates are smaller than 



99.9 %, leading to a quicker convergence to the site-specific equilibria. Once the equilibria for all 

features is reached on average the prediction will stay stable (see also Supplementary Figure 2B).   

It was suggested that if age-related DNA methylation changes were due to entropic alterations, it 

would lead to a bias against DNA methylation aging clock sites that start around 0.5 since these sites 

won’t regress towards the mean 19. Hence, if clock sites started around the mean and regressed away 

from it, it would argue for either a regulated mechanism, clonal expansion, or cellular selection19. This 

would be in line with our results in Supplement Figure 2B, i.e. if the equilibrium of all sites is exactly 

0.5, starting at 0.5 will not allow a prediction of the simulated age. However, since the maintenance 

rate and equilibrium of each DNA methylation site is site specific, not all sites will regress towards the 

mean but might even regress away from it. Such a regression away from the mean is still in line with 

stochasticity and entropic alterations. In our simulations each time-step is purely random stochastic 

variation based on the maintenance rates. So, while the site-specific maintenance rates give a 

framework in which each feature, i.e. CpG site, will change, the change itself is purely stochastic. Site-

specific 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  values indeed allowed for an accurate simulated age prediction even if all features 

start at 0.5 in the ground state (Supplementary Figure 2D).  The effect of the stochastic variation after 

100 times-steps in comparison with the ground state, shows that in our simulations features starting 

close to 0, respective 1, have less variation as features starting close to 0.5 in the ground state 

(Supplement Figure 2E), which resembles the comparison of a young and an old human DNA 

methylation dataset (Supplement Figure 1C). Without site-specific stochastic variation the prediction 

was driven by the regression to the mean, indicated by a negative slope between the ground state and 

the coefficients of the Elastic net regression (Figure 1G). Site-specific stochastic variation on the other 

hand does not show a correlation between the ground state and the coefficients of the Elastic net 

regression; features close to 0 for example can have negative coefficients indicating that these sites 

do not regress towards 0.5 (Supplement Figure 2F). This suggests that even a regression away from 

the mean could be explained via a stochastic process.  

In conclusion, accurate age predictors can be built by simulating DNA methylation changes purely with 

stochastic variation based on the maintenance efficiency rates of methylated and unmethylated sites. 

In addition, DNA methylation sites can have equilibria unequal to 0.5, allowing for a stochastic 

regression away from the mean, and even sites close to the site-specific equilibria can confer 

information for the aging clock. 

Public aging clocks 

Next, we were wondering whether published DNA methylation aging clocks might also mainly measure 

stochastic variation. For this, we generated again samples based on single-cell simulations with 



empirically estimated site-specific 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  values (and as mentioned above the limits 𝐸𝐸𝑚𝑚 > 95 % 

and 𝐸𝐸𝑑𝑑  < 23 %) and tested them with several published clocks. Surprisingly, Horvath’s pan-tissue DNA 

methylation clock 29 predicts a linear increase of the amount of stochastic variation generated based 

on empirically estimated 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  values until it caps off at an predicted age around ~60 years 

(Supplementary Figure 3A). The time-steps in our simulations are arbitrary and not directly 

comparable to the predicted age, since our simulated age tracks how often we added stochastic 

variation, and the predicted age is epigenetic age in years. We were, therefore, wondering whether 

the fast cap-off of the predicted age after the linear increase might be due to the amount of stochastic 

variation we apply in each time-step. The amount of stochastic variation is affected by the site-specific 

𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  values, which are empirically estimated from the oldest sample in the used dataset. Due to 

the nature of the estimation either 𝐸𝐸𝑚𝑚 or 𝐸𝐸𝑑𝑑  are fixed, allowing the other to be estimated from data. 

Note that multiple 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  values will regress to the same equilibrium over time (compare equation 

1). To stay within biologically meaningful regions, we set the limits which in the 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  values have 

to lie to be 95% < 𝐸𝐸𝑚𝑚 ≤ 100% and 0% ≤ 𝐸𝐸𝑑𝑑 < 23%  as explained above. The lower the limit for 𝐸𝐸𝑚𝑚, 

respective the higher the limit for 𝐸𝐸𝑑𝑑, the higher the stochastic variation per time-step on average, 

since each site (feature) is potentially less well maintained, leading to a quicker regression to the 

equilibrium (the perfect maintenance would be 𝐸𝐸𝑑𝑑=0, and 𝐸𝐸𝑚𝑚=1). For example, CpG sites with 𝐸𝐸𝑚𝑚 

=99% and 𝐸𝐸𝑑𝑑=1% will regress towards 0.5 slower than CpG sites with 𝐸𝐸𝑚𝑚=90% and 𝐸𝐸𝑑𝑑=10%.  The real 

limits for 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  are currently not known and we, therefore, estimated them as explained above. 

We wondered whether we could estimate the limits for 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  such that the epigenetic age 

prediction of our simulated data would be as accurate as possible regarding the simulated age. We 

tested multiple combinations of limits for 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  and calculated the R² as a measure of accuracy 

between the predicted and the simulated age (Figure 3A). Horvath’s epigenetic clock has the highest 

accuracy in predicting the simulated age with the limits  97% < 𝐸𝐸𝑚𝑚 ≤ 100% and 0% ≤ 𝐸𝐸𝑑𝑑 < 5%, 

which is indeed a narrower range for 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  as we previously assumed (Figure 3A). Indeed, the 

prediction with Horvath’s epigenetic clock caps-off later with these new limits (Figure 3B, compare 

Supplement Figure 3A).  Even more surprisingly, the same is true if all CpG sites were simulated with 

a universal maintenance efficiency of 99%, with Pearson correlations going as high as 0.97 (the R², 

however, is with ~0.5 lower than for the empirically estimated maintenance efficiencies in Figure 3A,B) 

for a maintenance efficiency of 99 % for all CpG sites (Figure 3C). The Pearson correlations are robust 

to the universal methylation maintenance efficiency, but peak at 99% (Supplement Figure 3B). Setting 

a low maintenance efficiency of 90 % leads to a reduced Pearson correlation (Supplement Figure 3B) 

since the features reach the equilibrium faster and therefore cap off quicker (compare Figure 2B). 

Setting a high maintenance efficiency of 99.95 % reduces the Pearson correlation as well, due to the 



reduced speed of convergence (Supplement Figure 3B). Notably, Horvath’s clock predicts an old age 

of 69.4 years for a dataset with DNA methylation levels of 0.5 for all CpG sites.  

Even the second generation aging clock PhenoAge 30, which is built on a proxy for biological age based 

on clinical biomarkers, showed the same behavior (Figure 3D-F, Supplement Figure 3C,D). The 

previously assumed limits for 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  led to a similar linear increase, and early cap-off (Supplement 

Figure 3C), which could be improved upon estimating better limits (Figure 3D,E), which coincidentally 

are the same as estimated with Horvath’s clock, i.e.  97% < 𝐸𝐸𝑚𝑚 ≤ 100% and 0% ≤ 𝐸𝐸𝑑𝑑 < 5%. 

PhenoAge as well significantly correlates with the simulated age of samples simulated with a universal 

maintenance efficiency of 99% (Figure 3F), which as well was robust to the maintenance efficiency 

chosen (Supplement Figure 3D). 

Interestingly, the effect of the age of the sample used for the ground state is in line with the 

expectation that we had if epigenetic clocks would indeed measure the amount of stochastic variation 

in the data. Starting the ground state with a sample from a 16-year-old and simulating the addition of 

up to 100 stochastic variations shows the previously shown linear increase in predicted age with a cap-

off (Supplementary Figure 3E). Starting the ground state with a sample from a mid-aged 37-year-old, 

starts the prediction higher, shows a smaller linear increase in the predicted age, and leads to a quicker 

arrival and longer time at the cap (Supplement Figure 3F). Starting the ground state with a sample of 

an old 81-year-old, does not show a difference in the prediction upon stochastic variation, indicating 

that the ground state is already containing as much stochastic variation as we would expect at the cap-

off (Supplement Figure 3G). All tested first generation aging clocks showed the same pattern as 

Horvath’s and the PhenoAge clock. Vidal-Bralo’s blood aging clock 31, Lin’s clock 32, and even Weidner’s 

aging clock that is based on just 3 CpG sites 33 significantly correlated with the simulated age, 

independent on whether empirically estimated or universal maintenance efficiencies were applied  

(Supplementary Figure 4A-F).  

In conclusion, we show here that first as well as second generation aging clocks significantly correlate 

with the amount of stochastic variation added to a young biological starting point and this irrespective 

of whether empirically estimated or universal maintenance rates were assumed. This indicates that 

chronological as well as biological age correlate with stochastic changes in DNA methylation data. 

Stochastic data-based aging clock 

Motivated by these results, we wondered whether a clock built on simulated data could predict the 

chronological age of biological samples with known chronological age. To this end, we generated data 

in the same manner as above, starting from the youngest sample of the biological dataset 

(GSM1007467 26), empirically estimated 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  values (within the limits found above, i.e.  



97% < 𝐸𝐸𝑚𝑚 ≤ 100% and 0% ≤ 𝐸𝐸𝑑𝑑 < 5%), trained an Elastic net regression model on simulated 

samples, and predicted the chronological age of biological samples. As before, starting from the same 

ground state, the data is randomly changed based on the site-specific 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  values in each time-

step (Figure 2A), i.e. a sample of simulated age 1 underwent one single-cell stochastic variation 

application, a sample of age 100 underwent the same stochastic variation application independently 

100 times; older simulated samples accumulated therefore more stochastic variation on average. 

Note, that the scale and units of the simulated age are arbitrary, and different from the chronological 

age of biological samples. The Elastic net regression is trained to predict the simulated age, i.e. how 

often stochastic variation was added to the starting values of all features in the ground state, as 

described in Figure 1B. Similar to Horvath’s epigenetic clock, we found it to be beneficial if we applied 

a scaling of the simulated age before training the model (see methods for details). Note, that since the 

simulated age has arbitrary time-steps this won’t interfere with any conclusion drawn from the 

predictions of a model trained with scaled simulated age. The trained age predictor was then applied 

to the independent blood DNA methylation dataset, excluding the youngest and oldest sample as they 

were used to define the ground state and as basis for estimating the methylation maintenance 

efficiencies, respectively. Surprisingly, a small simulated training dataset with one simulated sample 

per stochastic variation generation starting with the CpG sites from Horvath’s epigenetic clock led to a 

significant Pearson correlation of 0.87 (p-value=1.66e-119) of chronological age and the predicted 

simulated age, i.e. how often stochastic variation was applied to the data (Figure 3G). While the scale, 

units, and axes of the prediction is different as mentioned above, this indicates that accumulating 

stochastic changes correlate linearly with chronological age. To verify that this is reproducible not only 

with Horvath’s epigenetic clock sites, but also randomly chosen CpG sites, we used the same set-up as 

explained above, but with different randomly chosen ground states with different features sizes, i.e. 

amount of CpG sites used for training. Interestingly, the significant correlation between the 

chronological age and the stochastic data-based model predictions seems to be largely robust to the 

amount of CpG sites used for training (Supplement Figure 5A). In order to validate that chronological 

age is the relevant factor for the prediction, we used the same setup as above but permutated the 

chronological age of all samples randomly. The results show that no significant correlation can be made 

(Supplement Figure 5B). This indicates that the results of a predictor that is trained to predict how 

often independent stochastic variation was applied to a common ground state, indeed correlate with 

the chronological age of biological samples. 

In conclusion, our analysis shows that simulating stochastic data starting from a young biological 

sample with site-specific maintenance rates, allows building an Elastic net regression model whose 

predictions are significantly correlated with the chronological age of biological samples. The only 

biological data in the regression model is the ground state as well as the estimated maintenance rate 



efficiencies, indicating that our simulated stochastic changes to the ground state capture a process 

that is resembling the aging process.  

Transcriptomic biological age prediction 
To verify, that not only human DNA methylation data can be used, and that stochastic variation not 

only enables the prediction of the chronological, but also biological age, we next sought to validate our 

approach in transcriptomic data from C. elegans. C. elegans has the unique advantage that the effect 

on lifespan of genetic, environmental, and pharmacological interventions is known and corresponding 

transcriptome data are available thus allowing the determination of relative biological age. Moreover, 

we can directly estimate the biological age via temporal rescaling and we have recently shown that 

binarization of transcriptomic data allows for an highly accurate biological age prediction of C. elegans 

with the BitAge clock 34. First, we tested whether BitAge would be able to predict a linear trend in the 

simulated data, similar to the epigenetic clocks in Figure 3 and S4. For this we defined the ground state 

as the biologically youngest adult sample (GSM2916344 35) in our dataset and simulated stochastic 

variation similar as explained in Figure 1A. We rescaled the log-transformed RNA-seq counts to be 

within 0 and 1, and simulated samples by adding stochastic variation for an age range of 1-16 (the 

average C. elegans lifespan after temporal rescaling is ~16 days 34). Note that the age range is arbitrary, 

and the scale and unit not directly comparable to the biological age. The stochastic variation was 

sampled and added as explained in Figure 1A. We simulated 10 samples per age step and binarized 

them as described previously 34. These simulated binarized samples were used as input for the BitAge 

prediction. In accordance with the epigenetic clock results, BitAge predictions as well correlate linearly 

with the amount of stochastic variation in the data (Figure 3H). The correlation is robust to the amount 

of stochastic variation added in each time-step, with a peak in Pearson correlation of 0.81 at stochastic 

variation sampled from a normal distribution with a standard deviation of 0.01 (Supplement Figure 

5C). This indicates that not only the predicted human epigenetic age, but also the predicted 

transcriptomic age of C. elegans correlates with age-dependent stochastic variation in the data. 

In Figure 3G and Supplement Figure 5A,B we have shown that a stochastic-data based clock is linearly 

correlated with the chronological age of humans. Next, we wondered whether we could not only build 

a predictor that is significantly correlated with the chronological, but also the biological age of an 

organism. For this we simulated data based on the distribution that resulted in the best correlation 

with BitAge, i.e. a normal distribution with a standard deviation of 0.01 (Supplement Figure 5C), and 

trained an Elastic net regression model using the same approach as defined above. We started with 

the scaled counts of the youngest adult RNA-seq sample, applied stochastic variation 1-16 times 

sampled from a normal distribution with mean of 0 and standard deviation of 0.01, and trained an 

Elastic net regression model to predict the simulated age, i.e. how often stochastic variation was added 



to the ground state. Similar to our results above, we found it to be beneficial if we applied a scaling of 

the simulated age before training the model (see methods for details). Note, that since the simulated 

age has arbitrary time-steps this won’t interfere with any conclusion drawn from the predictions of a 

model trained with scaled simulated age. Once trained we applied the model to predict C. elegans 

RNA-seq samples with known biological age. For this we processed 994 RNA-seq samples for which the 

biological age could be calculated (Supplementary Table 1, see methods for details). The Elastic net 

regression model based on a transcriptomic ground state and stochastic variation is significantly 

correlated with the biological age of public RNA-seq samples (excluding the youngest sample which 

was used for the ground state) with a Pearson correlation of up to 0.7 between the predicted simulated 

age and the biological age of C. elegans samples (Figure 3I). This prediction is again robust to the 

number of features, i.e. genes, used in the simulation (Supplement Figure 5D). And similar to the 

epigenetic results in Figure 3G and Supplement Figure 5A,B, a permutation of the biological age does 

not correlate with the predicted simulated age, indicating that the correlation is driven by the 

biological age (Supplement Figure 5E). The only biological data incorporated in this model is the 

biological ground state, while the stochastic variation is sampled from a normal distribution centered 

at 0 with a fixed standard deviation. These results indicate that not only human epigenetic clocks, but 

also C. elegans transcriptomic clocks correlate linearly with stochastic variation in the data. Moreover, 

a transcriptomic stochastic-data based clock can be built, whose predictions are significantly correlated 

with the biological age of samples. 

 

Discussion 

Biological systems are known to become noisier with progressing age. Aging has been shown to affect 

stochastic DNA methylation drifts and subsequent degradation of transcriptional networks in mouse 

muscle stem cells 36, increased cell-to-cell gene expression variation has been observed with aging 37, 

and the stability of transcriptional networks has been closely linked to aging and stress resistance 38. 

These stochastic methylation changes could appear every time a DNA methylation site has to be copied 

or maintained. Stochastic DNA damage, a central factor in the aging process 7, leads to DNA repair and 

Dnmt1 recruitment to maintain DNA methylation pattern during the repair process 39. DNA replication 

involves the copying and maintenance of all CpG methylation sites 40. Interestingly, replication timing 

during S-phase itself has been shown to affect methylation maintenance levels 41. This is in line with 

Jenkinson et al.’s information-theoretic approach to the epigenome 15, since higher maintenance, and 

therefore lower information loss, consumes more energy and is, therefore, focused on more crucial 

regions of the genome. Such regions also tend to be replicated earlier, e.g. constitutively active 

housekeeping genes always replicate early 42. 



It was suggested that 90 % of CpG sites are driven by non-stochastic genetic and environmental factors, 

while only 10 % are driven by biological stochastic variation 43. Our single-cell simulation results, in 

contrast, are in line with a recent publication by Tarkhov et al. 20 that showed increased single-cell DNA 

methylation level heterogeneity with age. Tarkhov et al. also simulated stochastic changes in single-

cell DNA methylation based on a different approach via exponential decay and that when starting a 

simulation with either 0 or 1 for all sites before applying stochastic changes, a prediction with high 

accuracy is possible. This is in line with the regression-to-the-mean model, since each site starts at the 

extreme and can only diverge from it 20.  

Here, we extended on these results, by showing that not only simulated datasets starting at the 

extremes (0 or 1), but also uniformly distributed or biological starting points allow for robust 

predictions with normal-distributed as well as with empirically estimated noise. Our extended 

simulations also do not only apply to DNA methylation data, but essentially all data types which have 

range limits or can be normalized to be within 0 and 1. Therefore, in addition to methylation clocks, 

any set of biological measures, whether molecular or physiological, could be used for building aging 

clocks. 

We find that first as well as second generation DNA methylation aging clocks significantly correlate 

with the amount of stochastic variation in the data suggesting that chronological as well as biological 

aging clocks are measuring stochastic variation. Interestingly, the prediction of all tested clocks caps 

off after a certain amount of stochastic variation in the data and stays stable afterwards. This could 

indicate that the simulated data approached the site-specific equilibria and stochastic deviations from 

it are not interfering with the predicted age anymore. In line with this, it has been shown that 

epigenetic clocks tend to underestimate the age of older subjects 44, which could be due to the DNA 

methylation sites reaching their equilibrium states.  

We have validated the predictive power of stochastic data to predict biological age by using our 

recently developed transcriptomic BitAge aging clock 34 with data simulated from a young C. elegans 

transcriptome. BitAge was designed to diminish the amount of aging-irrelevant variability in the data 

by binarization, which allowed a highly accurate biological age prediction. Interestingly, even after 

binarization with BitAge the amount of simulated stochastic variation significantly correlates with the 

predicted age by BitAge. As the lifespan data of each of those C. elegans datasets is known, this 

approach allows determining how well biological aging could be predicted. The significant predictive 

power of a clock build on stochastic data thus further emphasizes the underlying effect of stochasticity 

in driving biological aging. 

The fact that aging clocks strongly correlate with the amount of stochastic variation also cautions with 

regards to the identification of causal effects. CpG sites that show increased random variation faster 



are likely to be less efficiently maintained and are therefore not that important for cell survival or 

homeostasis. Targeting aging clock CpG sites might thus be unsuitable for the development of novel 

geroprotectors 11. This is also in line with a recent report showing that many chronological aging clocks 

can be built from DNA methylation data and that clock CpG sites have limited value for the 

understanding of biology or potential anti-aging interventions 45. 

The validity of entirely stochastic data-based aging clocks demonstrates the compatibility of precise 

measures of the pace of aging with the evolutionary theory of aging and entropy-driven stochastic 

variations in biological processes such as damage accumulation as the main drivers of aging. These 

results emphasize that a precise measure of the pace of aging does not require a programmed process 

underlying aging and, in contrast, underline the stochastic nature of the molecular alterations during 

aging. While maintenance levels will be highest in younger years, stochastic errors will start 

accumulating from conception. This will start a vicious spiral, since every additional error might disturb 

the intricate regulatory networks of the cell, leading to stronger and stronger defects in maintenance 

and thereby allowing for more errors to be made. Our data also suggest that the main accelerator and 

decelerator of aging is the degree of random variation. Reducing such random variation by tightening 

regulatory mechanisms such as methylation maintenance and gene expression would be predicted to 

slow the aging process and could provide targetable approaches. 

Lastly, the stochasticity underlying aging clocks unifies the concept of exact determination of age and 

the evolutionary theory of aging. Aging occurs as a consequence of reduced maintenance of 

homeostatic processes. Maintenance and repair genes have been selected for maximizing the transfer 

of genes through the germline 46. After reproduction the selective force for somatic maintenance and 

repair vanishes and, therefore, the tightness of regulatory processes is loosening and consequently 

stochasticity in the physiological processes increases. Indeed, our analysis predicts that the level of 

such stochasticity sets the pace of aging. Reinstating regulatory tightness could therefore provide 

opportunities for aging decelerating therapies.   
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Methods 

Bulk Simulations 

A ground state was generated with 2000 (or indicated otherwise) random features between 0 and 1. 

From this ground state 6 independent sets of 100 samples each (one sample per age from 1-100) were 

generated. Each of these 600 samples started from the same ground state with slight deviations, i.e. 

each sample started with stochastic variation generated from 𝑁𝑁(µ = 0,𝜎𝜎2 = 0.01²) added to the 

ground state to simulate biological variation. To model age-dependent stochastic variation 

accumulation, random noise was generated from a normal distribution 𝑁𝑁(µ = 0,𝜎𝜎2) with 

random.randn() from Numpy v.1.18.5 47.  The standard deviation 𝜎𝜎 used for generation of stochastic 

variation that is applied at each time-step is indicated in the figure legends. The simulated age of each 

sample defined how often stochastic variation generated from 𝑁𝑁(µ = 0,𝜎𝜎2) was independently added 

to the ground state. After stochastic variation addition values were kept between 0 and 1, by setting 

values bigger 1 to 1 and values smaller 0 to 0 (except for the results in Figure 1C, where no limits where 

applied). To train a predictor of the simulated age we used 3 sets of 100 independent samples for 

training of an Elastic net regression model with ElasticNetCV from sklearn v.0.23.1 48 with the following 

parameter: l1_ratio=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]. The remaining 3 sets of 100 independent 

samples were used as a hold-out validation dataset. 

Stochastic variation quantile distribution estimation from bulk data 

To estimate stochastic variation from bulk DNA methylation data we compared 2 public blood DNA 

methylation samples from a healthy 16-year-old male subject (GSM1007467) and a healthy 17-year-

old male subject (GSM1007336) from GSE41037 26. We chose samples from subjects one-year apart to 

model the amount of stochastic variation that accumulates within a year. Since DNA methylation sites 

close to 0 or 1 have a smaller stochastic variation distribution than sites in the middle of the 

distribution, we divided the data into 5, 10, 15, or 20 quantiles based on the DNA methylation levels 

of the youngest subject (Supplementary Figure 1D) and estimated the stochastic variation for each of 

the quantiles. To estimate the distribution of each quantile, we first computed the DNA methylation 

site specific differences between GSM1007336 and GSM1007467 (Supplementary Figure 1E), and 

used Python’s Fitter() function from fitter v.1.4.0 49 with the parameter distributions=[‘lognorm’] to 

estimate the best fitting lognorm distribution for each quantile (Supplementary Figure 1F).  



Noise quantile distribution application 

The ground state consists of randomly sampled 2000 (or indicated otherwise) CpG sites of the youngest 

sample in GSE41037 26 (GSM1007467). Each CpG site was sorted into the corresponding quantile and 

stochastic variation was generated from the fitted distribution with Scipy’s 50 stats.lognorm.rvs() 

function with the parameters scale, loc, and s estimated as described above with the Fitter() function. 

The simulated age of each sample defined how often stochastic variation generated from the fitted 

function was independently added to the ground state. After stochastic variation addition values were 

kept between 0 and 1, by setting values bigger 1 to 1 and values smaller 0 to 0. To train a predictor of 

the simulated age we used 3 sets of 100 independent samples for training of an Elastic net regression 

model with ElasticNetCV from sklearn v.0.23.1 48 with the following parameter: 

l1_ratio=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]. The remaining 3 sets of 100 independent samples were 

used as a hold-out validation dataset. 

Single-cell simulations 

The ground state of single-cell simulations consists of 2000 (or indicated otherwise) randomly chosen 

CpG sites of the youngest sample in GSE41037 26 (GSM1007467). Each of the features (CpG sites) is a 

number between 0 and 100 % and used to generate 1000 cells with binary values for each feature. A 

ground state value of 0.13, i.e. 13 % methylated, generates 1000 cells for which 130 are 1 (methylated), 

and 870 are 0 (unmethylated). One sample therefore consists of 2000 (or indicated otherwise) features 

with each 1000 simulated cells with binary values of either 1 or 0. Next, for each feature a methylation 

maintenance efficiency 𝐸𝐸𝑚𝑚 and de novo methylation efficiency 𝐸𝐸𝑑𝑑  was generated. As indicated in the 

figure legends, we either simulated data with a universal maintenance efficiency for all features, or we 

estimated 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑 from empirical data. For the empirical maintenance estimation, we set the site-

specific DNA methylation equilibrium to be the value of the oldest sample in the dataset (GSM1007832 
26)  and estimated 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  from the equation given by Pfeifer et al. 16: 

 𝑀𝑀𝑒𝑒𝑒𝑒 =  
𝐸𝐸𝑑𝑑

1 + 𝐸𝐸𝑑𝑑 − 𝐸𝐸𝑚𝑚
 [1] 

 
 

, where 𝑀𝑀𝑒𝑒𝑒𝑒 is the equilibrium of the methylation state, while retaining 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  within the limits 

𝐸𝐸𝑚𝑚 > 95 % and 𝐸𝐸𝑑𝑑  < 23 % (or indicated otherwise), as defined in previous publications16,17,28. 

 

Public aging clocks 

We downloaded the Elastic net regression coefficients for Horvaths pan-tissue clock29, Vidal-Bralo’s 

blood aging clock 31, Lin’s 99-CpG clock 32, Weidner’s 3-CpG clock33, and Levine’s PhenoAge30 clock and 



applied them to simulated data. The data were simulated as defined above, with the difference that 

we only used the clock-specific CpG sites as the features in the ground state, and we started the 

arbitrary simulated age at 16, i.e. the age of the subject of the ground state sample. Stochastic variation 

was simulated either with a universal maintenance efficiency for all CpG sites, or with empirically 

estimated maintenance rates as defined above. 

Stochastic data-based clock 

The stochastic data-based clock was computed based on simulations described above and used for 

predictions on all samples in the dataset GSE41037 26. We found that a rescaling of the simulated age 

before training and testing the model is beneficial. First, we rescaled via min-max scaling the simulated 

age to be within 0 and 1, multiplied it by 400 and subtracted 120. Note that this transformation on the 

arbitrary time-steps will not interfere significantly with the correlation analyses. For the correlation 

analyses, we excluded the youngest (GSM1007467; from which the ground state was sampled), and 

the oldest (GSM1007832; from which the maintenance efficiencies were estimated as described 

above) to not confound the correlation between the chronological age of samples in GSE41037 26, and 

the predicted age. To train a predictor of the simulated age we used 1 set of 100 independent samples 

for training of an Elastic net regression model with ElasticNetCV from sklearn v.0.23.1 48 with the 

following parameter: l1_ratio=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9].  

Public RNA-seq processing 

All 994 public RNA-seq samples were downloaded and processed the same. First, we preprocessed 

samples with Fastp v0.20.0 51 with the following parameters -g -x -q 30 -e 30. After preprocessing, the 

samples were mapped with Salmon v1.1 52 and the parameters –validateMappings –seqBias and for 

paired-end samples additionally –gcBias. The decoy-aware index for Salmon was generated with the 

WS281 transcriptome build from Wormbase 53. The results of Salmon were combined to the gene-level 

with tximport v1.14.2 54. Raw counts were log10-transformed after the addition of one pseudo-count, 

each sample was min-max normalized to bring each sample within the data range 0-1, and genes 0 in 

all 994 samples were filtered out. Binarization and prediction with BitAge were applied as described 

previously 34. 

Transcriptomic stochastic variation simulation 

The ground state consists of all (or indicated otherwise) gene counts (normalized as described above) 

of the biologically youngest sample (GSM2916344 35). From this ground state 10 independent samples 

for each time-step (from 1 to 16) were generated and used to train an Elastic net regression as 

described above (see Bulk simulations). Similar to the epigenetic stochastic-data based clock we found 

a rescaling of the arbitrary simulated time-steps by 2 to be beneficial, i.e. we multiplied the simulated 



age by 2 before training and testing the data. The Elastic net regression model was then used to predict 

the biological age of the 993 remaining C. elegans samples. 

 

Code availability statement 

Code for all simulations will be made public at https://github.com/Meyer-DH/ . 

 

Figure Legends 

Figure 1 

A) Sample generation explanation. One time-step is defined as the addition of one-time 

stochastic variation, i.e. random noise, to each feature of the ground state that is sampled 

from a normal distribution centered at 0 (Top). Samples with different simulated ages are 

generated starting from the same ground state, but independently from each other (Bottom). 

A sample of age 1 adds normal-distributed stochastic variation once to the ground state, a 

sample of age 2 twice independently, and so on.  

B) Model training and validation explanation. For training and validation 3 sets of independent 

samples are generated from the same ground state as explained in Figure 1A. 3 sets comprising 

the whole age-range, e.g. 1-100, are used as an input for an Elastic net regression to train a 

predictor that predicts the simulated age of a sample, i.e. how often stochastic variation was 

added to the ground state. The 3 independent datasets are used to validate the model and 

assess the accuracy. 

C) Unlimited stochastic variation does not allow for any prediction. All samples within the training 

and validation dataset started from the same ground state of 2000 uniformly randomly 

sampled features between 0 and 1. For every whole simulated age step from 1 to 100, normal-

distributed stochastic variation sampled from 𝑁𝑁(µ = 0,𝜎𝜎2 = 0.05²) was added. n=300 

samples (3 independent samples per age step) were used for training of the Elastic net 

regression model to predict the simulated age, and n=300 samples were used for validation. 

The x-axis shows the true simulated age, i.e. the number of times random stochastic variation 

was added to the ground state. The y-axis shows the prediction of the Elastic net regression 

model of the independent validation data (n=300, 3 samples per time point). The sides show 

the distribution of the samples. 

D) Same as C), but after addition of stochastic variation the values were kept within the range of 

0-1, e.g. values bigger to 1 were set to 1. Limiting the values after stochastic variation 

application allows to build highly accurate predictors of the simulated age. 



E) The predictions of the independent validation data are robust to the stochastic variation 

distribution. The samples were simulated the same as in D) with different stochastic variation 

distributions. The x-axis shows the standard deviation of the normal distribution from which 

the stochastic variation was sampled, i.e. 𝑁𝑁(µ = 0,𝜎𝜎2 = 0.005²) has a narrow noise 

distribution with 99.7 % of the sampled data within the range [-0.015, 0.015], while 

𝑁𝑁(µ = 0,𝜎𝜎2 = 0.01²)  has a wide distribution with 99.7 % of the sampled data within the 

range [-0.3, 0.3]. The y-axis shows the R² value between the simulated age and the predicted 

age of the independent validation data. 

F) Independent Elastic net regression models are highly correlated if trained on samples starting 

from the same ground state. The x-axis shows the coefficients of the Elastic net regression of 

D), and the y-axis shows the coefficients of an independent Elastic net regression on samples 

that started with the same ground state, but with independent stochastic variation 

application. 

G) The prediction in D) is possible due to a regression to the mean. The x-axis shows the starting 

values of the 2000 features of the simulated ground state, the y-axis the Elastic net regression 

coefficients for the model in D). Features starting close to 0 have a positive coefficient, 

indicating an increase over the simulated time period, while features close to 1 have a negative 

coefficient, indicating a decrease. Features close to 0.5 are more sensitive to random changes 

and are closer to 0. 

H) The accuracy of predictions caps off after ~1000 features in the ground state. The x-axis shows 

how many uniformly randomly features were sampled for the ground state that was used to 

build and validate an Elastic net regression model the same as in D). The y-axis shows the R² 

as a measure of model accuracy. Of note, the Elastic net regression will shrink coefficients of 

features to 0 and thereby reduce the features relevant for the prediction further. 

I) The amount of stochastic variation sets the pace of aging. The Elastic net regression model was 

trained the same as in D) with stochastic variation sampled from 𝑁𝑁(µ = 0,𝜎𝜎2 = 0.05²). Color-

coded are different independent validation samples, generated from the same ground state, 

but with stochastic variation from different normal distributions. Samples with stochastic 

variation from a distribution with a narrower standard deviation (𝑁𝑁(µ = 0,𝜎𝜎2 = 0.025²)) 

accumulate less noise and are predicted to age slower, i.e. the slope of the prediction is lower. 

Samples with stochastic variation from a distribution with a wider standard deviation 

(𝑁𝑁(µ = 0,𝜎𝜎2 = 0.1²), 𝑁𝑁(µ = 0,𝜎𝜎2 = 0.2²)) accumulate noise faster, have a steeper slope of 

prediction, and reach the maximum age faster. The x-axis shows the true simulated age, i.e. 

the number of times stochastic variation was added to the ground state. The y-axis shows the 

prediction of the Elastic net regression model of the independent validation data.  



Figure 2  

A) Explanation of single-cell simulations. Briefly, values from a bulk DNA methylation sample are 

used to generate 1000 binary cells for each feature (CpG site). Each feature is flipped randomly 

based on the site-specific methylation maintenance efficiencies 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑑𝑑  for each time-step. 

After each time-step, i.e. stochastic variation application, the average of all 1000 cells per 

feature is calculated and used as a sample for subsequent analyses. 

B) The accuracy of the model is dependent on the methylation maintenance efficiency rate. An 

Elastic net regression model was trained on n=300 samples (3 samples per time point) starting 

from the same ground state with 500 features and universal maintenance efficiencies 𝐸𝐸𝑚𝑚 and 

𝐸𝐸𝑑𝑑  (𝐸𝐸𝑢𝑢) and used to predict the simulated age of 300 independent validation samples. The x-

axis shows the methylation maintenance efficiency 𝐸𝐸𝑚𝑚 in %, 𝐸𝐸𝑑𝑑  was set to 100-𝐸𝐸𝑚𝑚, i.e. 

𝐸𝐸𝑢𝑢=𝐸𝐸𝑚𝑚). The y-axis shows the R² as a measure of model accuracy of the independent validation 

data. All samples within the training and validation dataset started from the same ground state 

of 500 randomly sampled features from the youngest healthy sample (GSM1007467) in 

GSE41037 26. 3 independent experiments with different ground states are shown for each 

maintenance efficiency. 

C) Single-cell simulation of DNA methylation sites based on 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑢𝑢 allows to build highly 

accurate predictions. An Elastic net regression model was trained on n=300 samples (3 samples 

per time point) starting from the same ground state and universal maintenance efficiencies 

𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑢𝑢 of 99.9 %. The x-axis shows the true simulated age, i.e. the number of times 

stochastic variation was added to the ground state. The y-axis shows the prediction of the 

Elastic net regression model of the independent validation data (n=300, 3 samples per time 

point). The sides show the distribution of the samples. The R² is 0.999. All samples within the 

training and validation dataset started from the same ground state of 500 randomly sampled 

features from the youngest healthy sample (GSM1007467) in GSE41037 26 

D) The accuracy of predictions with a universal maintenance efficiency rate of 99.9 % caps off 

after ~32 features in the ground state with an R² of 0.99. The x-axis shows how many features 

were sampled for the ground state that was used to build and validate an Elastic net regression 

model the same as in B) and C). The y-axis shows the R² as a measure of model accuracy. Of 

note, the Elastic net regression will shrink coefficients of features to 0 and thereby reduce the 

features relevant for the prediction further. 

E) The maintenance efficiency rate sets the pace of aging. The Elastic net regression model was 

trained the same as in B) and C) with a maintenance efficiency of 𝐸𝐸𝑚𝑚=𝐸𝐸𝑢𝑢=99.9 %. Color-coded 

are different independent validation samples, sampled from the same ground state, but with 

different maintenance efficiency rates. Samples with higher methylation efficiencies (99.99%) 



accumulate less stochastic variation and are predicted to age slower, i.e. the slope of the 

prediction is lower. Samples with lower maintenance efficiencies (95%, 99%) accumulate 

stochastic variation faster, have a steeper slope of prediction, and reach the maximum age 

faster. The x-axis shows the true simulated age, i.e. the number of times stochastic variation 

was added to the ground state. The y-axis shows the prediction of the Elastic net regression 

model of the independent validation data.  

F) Biologically estimated maintenance rates allow for highly accurate predictions. Site-specific 

𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑢𝑢 values were estimated from data (see methods for details). The simulations were 

done the same as in C) but with site-specific maintenance rates. 

Figure 3  

A) The methylation maintenance efficiency limits affect the simulation and subsequent 

prediction with Horvath’s epigenetic clock 29. The x-axis shows the limit of 𝐸𝐸𝑚𝑚, i.e. 𝐸𝐸𝑚𝑚has to 

be bigger than the depicted limit. Color-coded is the limit of 𝐸𝐸𝑑𝑑, i.e. 𝐸𝐸𝑑𝑑has to be smaller than 

the depicted limit. The site-specific maintenance efficiencies are estimated as described in the 

methods based on the oldest sample in the dataset (GSM1007832 26) and to be within the 

specified limits. The y-axis shows the R² as a measure of accuracy between the predicted 

epigenetic age by Horvath’s epigenetic clock 29 and the simulated age, i.e. how often stochastic 

variation was applied to the ground state.  𝐸𝐸𝑚𝑚 > 97 % and 𝐸𝐸𝑑𝑑  < 5 % has the highest accuracy. 

B) Horvath’s epigenetic age prediction29 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝐸𝑚𝑚 > 97 % and 𝐸𝐸𝑑𝑑  < 5 %  starting from biological data from 

a young human blood sample (GSM1007467) 26, correlates significantly with the simulated age, 

i.e. how often stochastic variation was applied to the ground state. Since the ground state was 

starting from a sample of a 16-year-old human, we set the starting point of the simulated age 

to 16.  

C) Horvath’s epigenetic age prediction29 of samples simulated based on a universal maintenance 

efficiency rate of 99 % for all features (CpG sites) starting from biological data from a young 

human blood sample (GSM1007467) 26, correlates significantly with the simulated age, i.e. how 

often stochastic variation was applied to the ground state. Since the ground state was starting 

from a sample of a 16-year-old human, we set the starting point of the simulated age to 16. 

D) The methylation maintenance efficiency limits affect the simulation and subsequent 

prediction with PhenoAge30. The x-axis shows the limit of 𝐸𝐸𝑚𝑚, i.e. 𝐸𝐸𝑚𝑚has to be bigger than the 

depicted limit. Color-coded is the limit of 𝐸𝐸𝑑𝑑, i.e. 𝐸𝐸𝑑𝑑has to be smaller than the depicted limit. 

The site-specific maintenance efficiencies are estimated as described in the methods based on 

the oldest sample in the dataset (GSM1007832 26) and to be within the specified limits. The y-

axis shows the R² as a measure of accuracy between the predicted epigenetic age by 



PhenoAge30 and the simulated age, i.e. how often stochastic variation was applied to the 

ground state.  𝐸𝐸𝑚𝑚 > 97 % and 𝐸𝐸𝑑𝑑  < 5 % has the highest accuracy. 

E) Biological age prediction with PhenoAge30 of samples simulated based on biologically 

estimated maintenance rates with the limits  𝐸𝐸𝑚𝑚 > 97 % and 𝐸𝐸𝑑𝑑  < 5 %  starting from biological 

data from a young human blood sample (GSM1007467) 26, correlates significantly with the 

simulated age, i.e. how often stochastic variation was applied to the ground state. Since the 

ground state was starting from a sample of a 16-year-old human, we set the starting point of 

the simulated age to 16. 

F) Biological age prediction with PhenoAge30 of samples simulated based on a universal 

maintenance rate of 99 % for all features (CpG sites) starting from biological data from a young 

human blood sample (GSM1007467) 26, correlates significantly with the simulated age, i.e. how 

often stochastic variation was applied to the ground state. Since the ground state was starting 

from a sample of a 16-year-old human, we set the starting point of the simulated age to 16. 

G) The predictions of an Elastic net regression model based on simulated data , correlates 

significantly (Pearson correlation 0.87, p-value=1.66e-119) with the chronological age of the 

biological samples (GSE41037) 26 .  The simulated data is based on biologically estimated 

maintenance rates starting with Horvath’s epigenetic clock CpG sites from biological data from 

a young human blood sample. The x-axis shows the chronological age of the subjects from 

which blood DNA methylation data was processed. The y-axis shows the predicted simulated 

age, i.e. the prediction how often stochastic variation was added to the ground state and is 

therefore on a different scale and unit than the x-axis. 

H) Transcriptomic age prediction with BitAge 34 of simulated data starting with the biologically 

youngest adult C. elegans sample in the used dataset (GSM2916344 35) as the ground state 

and subsequent addition of stochastic variation sampled from a normal distribution centered 

at 0 with a standard variation of 0.01. The x-axis shows the simulated age, i.e. how often 

stochastic variation was added to the ground state, the y-axis shows the results of the BitAge 

prediction in days after binarization of the simulated data. The number of stochastic variation 

additions and the BitAge prediction significantly correlate with a Pearson correlation of 0.81, 

p-value=8.74e-39. 

I) The predictions of an Elastic net regression model based on simulated data starting with the 

biologically youngest adult C. elegans sample (GSM2916344 35) as the ground state and 

subsequent addition of stochastic variation sampled from a normal distribution centered at 0 

with a standard variation of 0.01, correlates significantly (Pearson correlation 0.7, p-value=3e-

147) with the biological age of the 993 RNA-seq samples (excluding the sample from which the 

ground state was sampled)  . The x-axis shows the biological age of the 993 adult C. elegans 



RNA-seq samples (excluding the sample from which the ground state was sampled), the y-axis 

shows the predicted simulated age of the Elastic net regression model based on stochastic-

data, i.e. the prediction how often stochastic variation was added to the ground state and is 

therefore on a different scale and unit than the x-axis. 

 

Supplementary Figure Legends 

Supplementary Figure 1 

A) Comparison between the ground state on the x-axis, and the ground state after applying 

stochastic variation from 𝑁𝑁(µ = 0,𝜎𝜎2 = 0.05²), i.e. Gaussian noise, once on the y-axis. 

B) Comparison between the ground state on the x-axis, and the ground state after applying 

stochastic variation from 𝑁𝑁(µ = 0,𝜎𝜎2 = 0.05²), i.e. Gaussian noise, 100 times on the y-axis. 

C) Comparison of human blood DNA methylation data of the youngest (x-axis= GSM1007467) and 

oldest (y-axis= GSM1007832) subjects in the public dataset GSE41037 26. Every dot depicts a 

DNA methylation site. Values close to 0 and 1 show less variation than values closer to 0.5. 

D) Quantile distribution of the ground state. The histogram depicts the data distribution of the 

DNA methylation data of our ground state (GSM1007467 26). The 5 quantile ranges are 

depicted with the vertical black lines (one quantile contains all DNA methylation sites between 

two consecutive lines). The left-most line shows 0, the right-most line 1. Since most CpG sites 

start with a DNA methylation close to 0, more quantiles with narrower ranges are close to 0. 

E) Distribution of the variance between two samples of young subjects one-year apart from each 

other. The x-axis shows the youngest sample (GSM1007467) in the used public dataset 

GSE41037 26. The y-axis shows the difference between GSM1007336 and GSM1007467. 

F) Empirical distributions of 5 quantiles. The colored lines show the empirically data distributions 

of 5 quantiles. For each of the quantiles shown in Supplement Figure 1D we calculated the 

differences (see Supplement Figure 1E) of all CpG sites falling into the quantile and estimated 

the empirical distribution from these differences. For each of the quantiles a different 

distribution is estimated. The distribution of Quantile 1 (blue) is the narrowest around 0, 

indicating that CpG sites in the Quantile 1, i.e. the left-most quantile in Supplement Figure 1D, 

have the least amount of stochastic variation. Quantile 4 is the quantile with the biggest range 

in Supplement Figure 1D and broadest empirical distribution. 

G) Stochastic variation sampled from empirically estimated distributions allows accurate age 

predictions. To empirically estimate the stochastic variation between 2 samples, the data were 

split into quantiles (Supplement Figure 1D-F, see methods for details). The number of quantiles 

has no effect on the accuracy of the model. The x-axis shows the number of quantiles into 



which the data was split to predict stochastic variation distributions, i.e. the number depicts 

the number of stochastic variation distributions from which stochastic variation is sampled. 

The y-axis shows the R² of the independent validation data. 

H) Prediction results of the independent validation data for empirical stochastic variation with 5 

quantiles. All samples within the training and validation dataset started from the same ground 

state of 2000 randomly sampled features from the youngest healthy sample (GSM1007467) in 

GSE41037 26 . For every whole simulated age step from 1 to 100, stochastic variation sampled 

from the empirically estimated stochastic variation distributions was added. n=300 samples (3 

independent samples per age step) were used for training of the Elastic net regression model 

to predict the simulated age, and n=300 samples were used for validation. The x-axis shows 

the true simulated age, i.e. the number of times stochastic variation was added to the ground 

state. The y-axis shows the predicted age of the Elastic net regression model of the 

independent validation data (n=300, 3 samples per time point). The sides show the distribution 

of the samples. 

I) Comparison of the ground state on the x-axis (2000 randomly sampled features from the 

youngest healthy sample (GSM1007467 26)) and the ground state after 100x stochastic 

variation additions sampled from the 5 quantiles on the y-axis.  

 

Supplementary Figure 2 

A) Comparison of the ground state on the x-axis (2000 randomly sampled features from the 

youngest healthy sample (GSM1007467 26)) and the ground state after applying 100x single 

cell stochastic variation steps with a universal maintenance efficiency rate of 99.9 %, i.e. the 

maintenance efficiency rate is fixed to be the same for all features (y-axis).   

B) Starting single-cell simulations with a ground state consisting of 2000 features at 0.5 with a 

universal maintenance of 99 % allows no prediction. An Elastic net regression model was 

trained on n=300 samples (3 samples per time point) starting from the same ground state in 

which all features were set to 0.5, and universal maintenance efficiencies 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑢𝑢 of 99 %. 

The x-axis shows the true simulated age, i.e. the number of times stochastic variation was 

added to the ground state. The y-axis shows the prediction of the Elastic net regression model 

of the independent validation data (n=300, 3 samples per time point). The sides show the 

distribution of the samples. 

C) Starting single-cell simulations with a ground state consisting of 2000 features at 0.51 with a 

universal maintenance of 99 % allows for an accurate age prediction. The training and 



validation were done the same as in B) with the difference that all features in the ground state 

started at 0.51. 

D) Starting single-cell simulations with a ground state consisting of 2000 features at 0.5 with 

biologically estimated maintenance rates allows for an accurate prediction. The training and 

validation were done the same as in B) with the difference that 𝐸𝐸𝑚𝑚 and 𝐸𝐸𝑢𝑢 values were 

estimated from biological data (see methods for details). 

E) Comparison of the ground state on the x-axis (2000 randomly sampled features from the 

youngest healthy sample (GSM1007467 26)) and the ground state after applying 100x single 

cell stochastic variation steps with empirically estimated maintenance efficiency rates (y-axis).   

F) The prediction in Figure 2F) is not due to a regression to the mean, different to Figure 1. The 

x-axis shows the starting values of the 2000 randomly sampled features from the youngest 

healthy sample (GSM1007467 26) as the ground state, the y-axis the Elastic net regression 

coefficients for the model in Figure 2F). All ground state features can have positive as well as 

negative coefficients, indicating that the prediction is not based on a regression to the mean.  

 

Supplementary Figure 3 

A) Horvath’s epigenetic age prediction29 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝐸𝑚𝑚 > 95 % and 𝐸𝐸𝑑𝑑  < 23 %   starting from biological data from 

a young human blood sample (GSM1007467) 26, correlates significantly with the simulated age, 

i.e. how often stochastic variation was applied to the ground state. 

B) Pearson correlation of Horvath’s epigenetic age prediction29 of simulated data and the true 

simulated age for different universal methylation maintenance efficiencies. 5 independent 

experiments with different ground states are shown for each maintenance efficiency. 

C) Biological age prediction with PhenoAge30 of samples simulated based on biologically 

estimated maintenance rates with the limits  𝐸𝐸𝑚𝑚 > 95 % and 𝐸𝐸𝑑𝑑  < 23 %    starting from biological 

data from a young human blood sample (GSM1007467) 26, correlates significantly with the 

simulated age, i.e. how often stochastic variation was applied to the ground state. 

D) Pearson correlation of biological age predictions with PhenoAge30 of simulated data and the 

true simulated age for different universal methylation maintenance efficiencies. 5 

independent experiments with different ground states are shown for each maintenance 

efficiency. 

E) Horvath’s epigenetic age prediction29 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝐸𝑚𝑚 > 97 % and 𝐸𝐸𝑑𝑑  < 5 %    starting from biological data from 

a young human blood sample age 16 (GSM1007467) 26, correlates significantly with the 



simulated age, i.e. how often stochastic variation was applied to the ground state. The 

simulation is the same as in Supplement Figure 3A, but with a simulated age range from 0-99 

for an easier comparison with Supplement Figure 3F,G. 

F) Horvath’s epigenetic age prediction29 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝐸𝑚𝑚 > 97 % and 𝐸𝐸𝑑𝑑  < 5 %    starting from biological data from 

a middle-aged human blood sample age 37 (GSM1007384) 26, still correlates significantly with 

the simulated age, i.e. how often stochastic variation was applied to the ground state. The 

predicted age starts at a later time-point than the predictions in Supplement Figure 3E, and 

reaches the cap-off earlier. 

G) Horvath’s epigenetic age prediction29 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝐸𝑚𝑚 > 97 % and 𝐸𝐸𝑑𝑑  < 5 %    starting from biological data from 

an old human blood sample age 81 (GSM1007791) 26, does not correlate significantly with the 

simulated age, i.e. how often stochastic variation was applied to the ground state. Starting the 

ground state at an old age does not allow for a correlation between the predicted epigenetic 

age and the amount of stochastic variation in the data, since the prediction already starts in 

the cap-off. 

 

Supplementary Figure 4 

A) Vidal-Bralo’s epigenetic age prediction31 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝐸𝑚𝑚 > 97 % and 𝐸𝐸𝑑𝑑  < 5 %     starting from biological data from 

a young human blood sample (GSM1007467) 26, correlates significantly with the simulated age, 

i.e. how often stochastic variation was applied to the ground state. 

B) Vidal-Bralo’s epigenetic age prediction31 of samples simulated based on a universal 

maintenance rate of 99 % for all features (CpG sites) starting from biological data from a young 

human blood sample (GSM1007467) 26, correlates significantly with the simulated age, i.e. how 

often stochastic variation was applied to the ground state. 

C) Lin’s epigenetic age prediction32 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝐸𝑚𝑚 > 97 % and 𝐸𝐸𝑑𝑑  < 5 %     starting from biological data from 

a young human blood sample (GSM1007467) 26, correlates significantly with the simulated age, 

i.e. how often stochastic variation was applied to the ground state. 

D) Lin’s epigenetic age prediction32 of samples simulated based on a universal maintenance rate 

of 99 % for all sites starting from biological data from a young human blood sample 

(GSM1007467) 26, correlates significantly with the simulated age, i.e. how often stochastic 

variation was applied to the ground state. 



E) Weidner’s epigenetic age prediction33 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝐸𝑚𝑚 > 97 % and 𝐸𝐸𝑑𝑑  < 5 % starting from biological data from 

a young human blood sample (GSM1007467) 26, correlates significantly with the simulated age, 

i.e. how often stochastic variation was applied to the ground state. 

F) Weidner’s epigenetic age prediction33 of samples simulated based on a universal maintenance 

rate of 99 % for all sites starting from biological data from a young human blood sample 

(GSM1007467) 26, correlates significantly with the simulated age, i.e. how often stochastic 

variation was applied to the ground state. 

 

Supplementary Figure 5 

A) The feature size is largely irrelevant for stochastic data-based models. Predictions of Elastic 

net regression models trained on more than 500 random CpG sites (features) are 

significantly correlated with the chronological age. The x-axis shows the number of 

randomly selected features, i.e. CpG sites, for the ground state, which were subsequently 

used to generate data based on stochastic variations (see methods for details). These 

simulated samples were used to train the Elastic net regression. The y-axis shows the 

Pearson correlation between the chronological age of samples in GSE41037 26 (excluding 

the sample from which the ground state was sampled, and the oldest sample from which 

maintenance efficiencies were estimated)   and the prediction of the stochastic-data based 

model. 

B) Verification of Supplement Figure 5A). Using the same approach as in Supplement Figure 

5A, but with randomly shuffled chronological ages shows no significant correlation, 

indicating that chronological age, and not a confounding variable is correlated with the 

predictions of the model based on simulated data. The x-axis shows the number of 

randomly selected features, i.e. CpG sites, for the ground state, which were subsequently 

used to generate data based on stochastic variations (see methods for details. These 

simulated samples were used to train the Elastic net regression. The y-axis shows the 

Pearson correlation between the  permuted chronological age of samples in GSE41037 26 

(excluding the sample from which the ground state was sampled, and the oldest sample 

from which maintenance efficiencies were estimated)  and the prediction of the 

stochastic-data based model. 

C) The BitAge predictions in Figure 3H are robust to the distribution from which the stochastic 

variation is sampled. The x-axis shows the standard deviation of the normal distribution 

(centered at 0) from which stochastic variation for the simulations is sampled. The y-axis 

shows the Pearson correlation between the BitAge prediction of the simulated samples 



and the number of stochastic variation additions of the samples. Stochastic variation 

sampled from a normal distribution centered at 0 and a standard variation of 0.01 shows 

the highest Pearson correlation. 

D) The feature size is largely irrelevant for the model in Figure 3I). Predictions of Elastic net 

regression models trained on more than 100 features are significantly correlated with the 

biological age of C. elegans samples. The x-axis shows the number of randomly selected 

features, i.e. genes, for the ground state, which were subsequently used to generate data 

based on stochastic variations (see methods for details). These simulated samples were 

used to train the Elastic net regression. The y-axis shows the Pearson correlation between 

the biological age of the 993 samples (excluding the sample from which the ground state 

was sampled) and the prediction of the stochastic-data based model. 

E) Verification of Supplement Figure 5D). Using the same approach as in Supplement Figure 

5D, but with randomly shuffled biological ages of the C. elegans samples shows no 

significant correlation, indicating that biological age, and not a confounding variable is 

correlated with the predictions of the model based on simulated data. The x-axis shows 

the number of randomly selected features, i.e. genes, for the ground state, which were 

subsequently used to generate data based on stochastic variations (see methods for 

details. These simulated samples were used to train the Elastic net regression. The y-axis 

shows the Pearson correlation between the biological age of the 993 samples (excluding 

the sample from which the ground state was sampled) and the prediction of the stochastic-

data based model. 

Supplementary Table 1 

List of the 994 RNA-seq samples used for calculating the biological age  
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