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Abstract 
 

The differential transformation method (DTM) was first introduced by Zhou 37 years ago. 

This method is a semi-analytical numerical method for solving homogeneous or inhomogeneous 

linear ordinary differential equations. Indeed, the differential transform method is based on Taylor 

series expansion in a different way, in which the differential equation is turned into a recurrence 

relation to provide a series solution in terms of polynomials. 

This research is concerned with the differential transformation method for both ordinary 

and partial differential equations. To solve initial value and boundary value problems for ordinary 

differential equations, we use the one-dimensional differential transform technique. Furthermore, 

we present new modifications to the differential transformation method that improve its algorithm. 

The differential transformation method is capable to reduce the size of calculations and 

handles homogeneous or inhomogeneous linear ordinary differential equations directly. Seven 

examples are considered for the numerical illustrations of this method. The results demonstrate the 

reliability and efficiency of this method for such problems. 

 

Keywords: Differential transformation method, ordinary differential equations, Taylor's 

series expansion. 
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Using The Differential Transformation Method (DTM) to Solving Ordinary Differential 

Equations 

 

1.  Introduction 

1.1. Overview 

Several exact, approximate, and numerical methods, such as the Cauchy-Euler method, 

exponential sequences, and others, are available for solving differential equations. Most 

computational methods depend on trial and error or require sophisticated calculations that 

necessitate numerically approximating results using computers. Recently, a new algorithm called 

the Differential Transformation Method (DTM) has been proposed for solving linear ODEs, which 

promises to be faster and more accurate than existing methods. (Ahn, Ramm, & Choi, 2006) 

The Differential Transformation Method (DTM) is a numerical technique used for solving 

differential equations. It is based on the principle of converting differential equations into algebraic 

equations, thus making it easy to solve the equations. This method was introduced by Zhou in 1986 

and has proved to be effective in solving various differential equations, including linear and 

nonlinear differential and partial differential equations (Ertürk, 2007). Many physical and natural 

processes in the actual world are expressed as differential equations, most of which are nonlinear. 

As a result, obtaining accurate or analytical solutions for them is challenging. (Moon, Bhosale, 

Gajbhiye, & Lonare, 2014) 

Many approaches for solving or approximating nonlinear differential equations have been 

presented. The Adomian Decomposition Method (ADM), Variational Iteration Method (VIM) (Ali, 

2007), Homotopy Analysis Method (HAM), and Homotopy Perturbation Method (HPM) are a few 

examples (Liao, 2004). However, these approaches necessitate computations with some 

constraints, and in some circumstances, additional terms are required to achieve excellent 

convergence. There is a need for a technique that can readily handle nonlinear terms with no limits 

and with fewer computation sizes. Indeed, the so-called Differential Transform Method (DTM), 

which produces a series solution, can address some of the challenges. 

The DTM algorithm has several advantages over other numerical methods for solving 

linear ODEs. First, it is an analytical method that provides a closed-form solution to the differential 
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equation. This is particularly useful for problems that require high accuracy and precision. Second, 

the DTM algorithm is highly efficient and can provide solutions quickly and easily. Third, the 

DTM algorithm can handle a wide range of differential equations, including those with variable 

coefficients and non-linear terms (Chang & Chang, 2008). The DTM algorithm has been tested on 

a range of linear ODEs, and the results show that the algorithm is highly accurate and can provide 

solutions with a high degree of precision. (Diethelm, Ford, J. , & Weilbeer, 2006) 

The DTM is a promising new algorithm that offers several advantages over existing 

numerical methods. Its analytical nature, high accuracy, and ability to handle a wide range of 

differential equations make it a valuable tool for various applications in science and engineering. 

With further research and development, the DTM algorithm may become the go-to method for 

solving linear ODEs. The DTM is a very effective numerical and analytical approach for solving 

many forms of differential and integral problems. This method turns the differential equations into 

a recurrence relation, and then, using a different approach, we find convergent series solutions via 

Taylor series expansion. (İbiş, 2012) 

The DTM algorithm is a powerful analytical method that transforms a differential equation 

into a series of algebraic equations, which can then be solved analytically. The DTM algorithm is 

based on the idea that a differential equation can be transformed into an infinite series of algebraic 

equations, which can be efficiently solved using standard algebraic techniques (Chang & Chang, 

2008). The DTM algorithm works by transforming the differential equation into a series of Taylor 

series expansions. The differential transformation transforms the Taylor series expansions into a 

series of algebraic equations. The algebraic equations can then be solved analytically, producing a 

closed-form solution to the differential equation. (Gülsu & Sezer, 2006) 

 

In this research, we will make an illustration of how to reach the transformed function from 

the original function, which includes the fundamental operations, in addition to presenting new 

examples of differential equations and examining the DTM to find the approximate analytical 

solution of linear ordinary differential equations, which was performed originally by (Batiha & 

Batiha, 2011). 
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1.2. Basic Background 

Brief basic background on Differential Equations (DE), Initial Value Problems (IVP), 

Boundary Value Problems (BVP), Ordinary Differential Equations (ODE), The Taylor Series 

Method, Convergence Rate, Homogeneous ODE, Kronecker delta as a function, Leibnitz formula 

and Classification of the Differential Equations is provided in this section. 

Definition 1: Differential Equation (DE): “is an equation that contains one or more derivatives 

of an unknown function”  (Trench, 2013). Or we can define it as a mathematical equation that 

relates a function or a set of functions to their derivatives (i.e., rates of change) with respect to one 

or more independent variables. In other words, it describes how a quantity changes over time or 

space, based on the rate at which it changes. 

Definition 2: Initial Value Problems (IVP): It is a type of differential equation problem that 

involves finding a solution to a differential equation that satisfies certain initial conditions. 

Specifically, an IVP consists of a differential equation, an initial value, and a domain of the 

independent variable.  

The differential equation provides a relationship between the unknown function and its 

derivatives, while the initial value specifies the value of the function at a given point in the domain. 

The domain of the independent variable typically represents time or space and specifies the range 

of values over which the problem is to be solved. 

  They are often written as: 

�́� = f(𝑥, 𝑦)    ⇒  𝑦(𝑎) = 𝑏 

The point (𝑥, 𝑦) is where the function 𝑦(𝑥) must pass. 

The solution to an IVP is a function that satisfies both the differential equation and the 

initial condition. In general, the solution to an IVP is unique, provided that certain conditions on 

the differential equation and the initial value are met. Initial value problems arise in many areas of 

science and engineering, where they are used to model and analyze the behavior of systems that 

evolve over time or space (Trench, 2013). 

Definition 3: Boundary Value Problems (BVP): It is a type of differential equation problem that 

involves finding a solution to a differential equation subject to certain boundary conditions. 

Specifically, a BVP consists of a differential equation, a set of boundary conditions, and a domain 
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of the independent variable. The differential equation provides a relationship between the unknown 

function and its derivatives, while the boundary conditions specify the values of the function at the 

endpoints of the domain (Hassan, 2008). 

Boundary conditions can take many forms, but typically they specify either the value of 

the function, its derivative, or a combination of both, at one or more points in the domain. The 

domain of the independent variable typically represents time or space and specifies the range of 

values over which the problem is to be solved. 

The solution to a BVP is a function that satisfies both the differential equation and the 

boundary conditions. In general, the solution to a BVP is not unique and may depend on the 

specific choice of boundary conditions. Boundary value problems arise in many areas of science 

and engineering, where they are used to model and analyse the behaviour of systems that are 

subject to constraints at their endpoints. 

Definition 4: Ordinary Differential Equation (ODE): It is a mathematical equation that relates 

a function to its derivatives. In other words, given a function of one variable, an ODE describes 

how the function changes as the variable changes. The equation typically involves the function, 

one or more of its derivatives, and sometimes the variable itself. ODEs are called "ordinary" 

because they involve only one independent variable. This is in contrast to partial differential 

equations (PDEs), which involve multiple independent variables  (Trench, 2013).  

Definition 5: The Taylor Series Method: The Taylor series method is a numerical method for 

solving ordinary differential equations (ODEs). It works by approximating the solution of an ODE 

as a power series expansion around a given point. The method is named after the mathematician 

Brook Taylor (Trench, 2013). 

To apply the Taylor series method, we first write the ODE as a series expansion of the form: 

𝑦(𝑥  +  ℎ)  =  𝑦(𝑥)  +  ℎ 𝑦′(𝑥)  +  (ℎ2 / 2!) 𝑦′′(𝑥)  +  (ℎ3 / 3!) 𝑦′′′(𝑥)  + ⋯ .   

where y(𝑥) is the solution of the ODE at the point 𝑥, 𝑦′(𝑥) is the derivative of y with respect to 𝑥 

evaluated at 𝑥, 𝑦′′(𝑥) is the second derivative of 𝑦 with respect to 𝑥 evaluated at 𝑥, and so on. The 

parameter ℎ is the step size, which determines the distance between successive points at which the 

solution is evaluated (Trench, 2013). 
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The Taylor series method then approximates the solution by truncating the series after a 

finite number of terms. The resulting approximation is called the Taylor series polynomial, and it 

can be used to evaluate the solution at any point within the domain of the ODE. 

The Taylor series method is an accurate and versatile numerical method, but it can be 

computationally intensive, especially for high-order ODEs or for large step sizes. Other numerical 

methods, such as the Runge-Kutta method or the Euler method, are often used in practice for their 

simplicity and efficiency (Parumasur, Singh, & Singh, 2009). 

Definition 6: Convergence Rate: A numerical method for approximating a solution to an initial 

value problem is said to be convergent if, assuming no round-off errors, the numerical 

approximation approaches the exact solution as the step size approaches zero. It should also be 

noted that (IVP) can have a unique solution, no solution, or infinitely many solutions (Lin, Tang, 

& Chen, 2014). 

Definition 7: Homogeneous ODE: It is a type of ODE in which all the terms involving the 

dependent variable and its derivatives have the same degree. In other words, if the ODE involves 

a function 𝑦(𝑥) and its derivatives of order 𝑛, then it is said to be homogeneous if all the terms in 

the equation have the same degree of 𝑦(𝑥) and its derivatives, namely 

𝑛 (Arfken, Harris, & Weber, 2012). 

Formally, an 𝑛𝑡ℎ-order homogeneous ODE can be written in the form: 

𝑎𝑛(𝑥)𝑦(𝑛) + 𝑎𝑛−1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥) = 0 

where 𝑦(𝑘)(𝑥) denotes the 𝑘th derivative of 𝑦 with respect to 𝑥, and 

𝑎𝑛(𝑥), 𝑎𝑛−1, … , 𝑎1(𝑥), 𝑎0(𝑥) are continuous functions of 𝑥 (Boyce & DiPrima, 2004). 

The term "homogeneous" comes from the fact that the ODE has a certain type of symmetry, 

namely that if 𝑦(𝑥) is a solution, then so is any multiple of 𝑦(𝑥). In other words, if 𝑦(𝑥) satisfies 

the ODE, then so does any function of the form 𝑐𝑦(𝑥) (Boyce & DiPrima, 2004). 

Homogeneous ODEs arise in many areas of mathematics and physics, and they can often 

be solved using techniques such as separation of variables, substitution, or Laplace transforms. 
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Definition   8: Kronecker Delta: The Kronecker delta is a function of two variables, which are 

generally typically non-negative integers, it is 1 if the variables are equal and 0 otherwise. (Arfken, 

Harris, & Weber, 2012) It is named after Leopold Kronecker. Defined for indices 𝑖 and 𝑗 as:  

𝛿𝑖𝑗 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

 

Definition   9: Leibnitz formula: The product rule is named after Gottfried Wilhelm Leibniz. If 𝑓 

and 𝑔 are both n-times differentiable functions, then the product is likewise n-times differentiable, 

and its 𝑛th derivative is provided by: 

𝑑𝑛(𝑔(𝑥)ℎ(𝑥))

𝑑𝑥𝑛
 =  ∑ (

𝑛
𝑟

)

𝑛

𝑟=0

𝑑𝑟𝑔(𝑥)

𝑑𝑥𝑟

𝑑𝑛 − 𝑟ℎ(𝑥)

𝑑𝑥𝑛 − 𝑟
 

1.3. Classification of the Differential Equations: 
 We discuss various important methods for categorizing differential equations, including type, 

order, Degree, and linearity. 

1.3.1. Classification by Type: An ordinary differential equation has just ordinary derivatives 

of one or more unknown functions with regard to a single independent variable (ODE). A 

partial differential equation is an equation that involves the partial derivatives of one or more 

unknown functions of two or more independent variables (PDE). 

1.3.2. Classification by Order: The differential equation order is dictated by the greatest 

appearing derivative (either ODE or PDE). 

Generally, the equation 𝑓 ( 𝑥 , 𝑦,   𝑦′,  𝑦′′, … … . , 𝑦𝑛) = 0.   is an ordinary differential 

equation of the 𝑛th order. 

1.3.3. Classification by Linearity: The categorization of differential equations as linear or 

nonlinear is critical. An 𝑛th order ordinary differential equation 𝑓 ( 𝑥 , 𝑦,   𝑦′,  𝑦′′, . . . , 𝑦𝑛) = 0 

If 𝑓 is a linear function of the variables 𝑥 , 𝑦,   𝑦′,  𝑦′′, … … . , 𝑦𝑛, it is said to be linear. A similar 

concept applies to partial differential equations. 

As a result, not as the nonlinear equation the generic linear ordinary differential equation 

of order 𝑛 is defined as: 

𝑎𝑛(𝑥)𝑦(𝑛) + 𝑎𝑛−1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥) = 𝑔(𝑥) 
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2. Principle of Differential Transformation Method (DTM) 
This section will introduce the fundamental concept, and definitions. This concept is then 

used to establish certain basic theorems. 

Remark: In this research, we utilize small letters to represent the original function and capital 

letters to represent the transformed function. The following theorems and proofs found in (Oke, 

2017), (Saeed & Rahman, 2011), (Chen, Lin, & Chen, 1996), (Odibat, 2008), (Abbasov & Bahadir, 

2005), (Hassn, 2004), (Arkoglu & Ozkl, 2008), and  (Arikoglu & Ozkol, 2005). We will assume 

that α, β, 𝜆, and c are constants and that, and the theorems can be deduced from equations (1) and 

(2). 

 Definition: The Differential Transformation (DT) of a function 𝑦(𝑥) is defined as follows:                            

                                                              𝑌(𝑘) =
1

𝑘!
[

𝑑𝑘𝑦(𝑥)

𝑑𝑥𝑘 ]
𝑥=0

                                   (1) 

Where the original function is 𝑦(𝑥), while the transformed function is 𝑌(𝑘). The differential 

inverse transform of 𝑌(𝑘) is defined as follows: 

𝑦(𝑥) = ∑ 𝑌

∞

𝑘=0

(𝑘)𝑥𝑘 ≈ 𝑦𝑁(𝑥) = ∑ 𝑌(𝑘)𝑥𝑘

𝑁

𝑘=0

                             (2) 

By substituting equation (1) in (2) we get: 

𝑌(𝑘) = ∑
𝑥𝑘

𝑘!

𝑑𝑘𝑦(𝑥)

𝑑𝑥𝑘
|

𝑥=0

                                     (3)

∞

𝑘=0

 

This indicates that the differential transform notion is derived from Taylor series 

expansion. We considered the scenario of 𝑥 = 0 in the preceding definition, although it is true for 

any fixed real integer 𝑥 = 𝑥0. 

Theorem 1. Scalar Multiplication:  If  𝑓(𝑥)  =  𝛼 𝑔 (𝑥) , then 𝐹[𝑘]  =  𝛼 𝐺[𝑘] 

Proof:  Let 𝑓(𝑥) be the original function, then the differential transform of 𝑓(𝑥) is given by: 

  𝐹(𝑘) =
1

𝑘!

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
|

𝑥=0
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  𝐹(𝑘) =
1

𝑘!

𝑑𝑘𝛼𝑔(𝑥)

𝑑𝑥𝑘
|

𝑥=0

 

            =
1

𝑘!
𝛼

𝑑𝑘𝑔(𝑥)

𝑑𝑥𝑘
|

𝑥=0

 

                                                                              =  𝛼 𝐺[𝑘]                                       ∎                

Theorem 2. Linear combination:  

Under Differential Transformation, a linear combination is closed i.e. 

𝐼𝑓     𝑓(𝑥)  =  𝛼 𝑔 (𝑥)  ±  𝛽 ℎ(𝑥) , 𝑡ℎ𝑒𝑛    𝐹[𝑘]  =  𝛼 𝐺[𝑘]  ±  𝛽 𝐻[𝑘] 

Proof:  Let 𝑓(𝑥) be the original function, then the differential transform of 𝑓(𝑥) is given by:  

                                                  𝐹(𝑘) =
1

𝑘!

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
|

𝑥=0

 

𝐹(𝑘) =
1

𝑘!

𝑑𝑘 ((𝛼𝑔(𝑥)) + (𝛽ℎ(𝑥)))

𝑑𝑥𝑘
|

𝑥=0

 

                                                             =
1

𝑘!
[
𝑑𝑘(𝛼𝑔(𝑥))

𝑑𝑥𝑘
+

𝑑𝑘(𝛽ℎ(𝑥))

𝑑𝑥𝑘
]|

𝑥=0

 

                                                             =
1

𝑘!
𝛼

𝑑𝑘𝑔(𝑥)

𝑑𝑥𝑘
|

𝑥=0

+
1

𝑘!
𝛽

𝑑𝑘ℎ(𝑥)

𝑑𝑥𝑘
|

𝑥=0

 

                                                             =  𝛼 𝐺[𝑘]  ±  𝛽 𝐻[𝑘]                     ∎ 

Theorem 3. The Differential Transformation of  𝑓′(𝑥):  

If  𝑓(𝑥) =
𝑑𝑔(𝑥)

𝑑𝑥
 , then 𝐹(𝑘) = (𝑘 + 1)𝐺(𝑘 + 1) 

Proof:  Let 𝑓(𝑥) be the original function, then the differential transform of 𝑓(𝑥) is given by:  

                                                    𝐹(𝑘) =
1

𝑘!

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
|

𝑥=0
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𝐹(𝑘) =
1

𝑘!

𝑑𝑘 𝑑𝑔(𝑥)
𝑑𝑥

𝑑𝑥𝑘
|

𝑥=0

 

𝐹(𝑘) =
1

𝑘!

𝑑𝑘+1𝑔(𝑥)

𝑑𝑥𝑘+1
|

𝑥=0

 

                                                                 𝐹(𝑘) =
(𝑘 + 1)!

𝑘!
[

1

(𝑘 + 1)!

𝑑𝑘+1𝑔(𝑥)

𝑑𝑥𝑘+1
]|

𝑥=0

 

                                                                 𝐹(𝑘) = (𝑘 + 1)𝐺(𝑘 + 1)                 ∎ 

Theorem 4. The Differential Transformation of  𝑓′′(𝑥):  

If  𝑓(𝑥) =
𝑑2𝑔(𝑥)

𝑑𝑥2  , then 𝐹(𝑘) = (𝑘 + 1)(𝑘 + 2)𝐺(𝑘 + 1) 

Proof:  Let 𝑓(𝑥) be the original function, then the differential transform of 𝑓(𝑥) is given by:  

                                                    𝐹(𝑘) =
1

𝑘!

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
|

𝑥=0

 

𝐹(𝑘) =
1

𝑘!

𝑑𝑘 𝑑2𝑔(𝑥)
𝑑𝑥2

𝑑𝑥𝑘
|

𝑥=0

 

𝐹(𝑘) =
1

𝑘!

𝑑𝑘+2𝑔(𝑥)

𝑑𝑥𝑘+2
|

𝑥=0

 

                                                                 𝐹(𝑘) =
(𝑘 + 2)!

𝑘!
[

1

(𝑘 + 2)!

𝑑𝑘+2𝑔(𝑥)

𝑑𝑥𝑘+2
]|

𝑥=0

 

                                                                  𝐹(𝑘) = (𝑘 + 2)(𝑘 + 1)𝐺(𝑘 + 2)                 ∎ 

Theorem 5. The Differential Transformation of  𝑓𝑛(𝑥):  

If  𝑓(𝑥) =
𝑑𝑛𝑔(𝑥)

𝑑𝑥𝑛  , then 𝐹(𝑘) = (𝑘 + 1)(𝑘 + 2). . . . . . . (𝑘 + 𝑛)𝐺(𝑘 + 𝑛) 

Proof:  Let 𝑓(𝑥) be the original function, then the differential transform of 𝑓(𝑥) is given by:  
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                                                    𝐹(𝑘) =
1

𝑘!

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
|

𝑥=0

 

                                                   𝐹(𝑘) =
1

𝑘!

𝑑𝑘 𝑑𝑛𝑔(𝑥)
𝑑𝑥𝑛

𝑑𝑥𝑘
|

𝑥=0

 

                                                   𝐹(𝑘) =
1

𝑘!

𝑑𝑘+𝑛𝑔(𝑥)

𝑑𝑥𝑘+𝑛
|

𝑥=0

 

                                                    𝐹(𝑘) =
(𝑘 + 𝑛)!

𝑘!
[

1

(𝑘 + 𝑛)!

𝑑𝑘+𝑛𝑔(𝑥)

𝑑𝑥𝑘+𝑛
]|

𝑥=0

 

                                                    𝐹(𝑘) = (𝑘 + 1)(𝑘 + 2). . . . . . . (𝑘 + 𝑛)𝐺(𝑘 + 𝑛)                 ∎ 

Theorem 6. The Polynomial function:  

If  𝑓(𝑥) = 𝑥𝑛 , then 𝐹(𝑘) = 𝛿(𝑘 − 𝑛)  ,  where   𝛿(𝑘 − 𝑛) = {
1, 𝑘 = 𝑛
0, 𝑘 ≠ 𝑛

   is Kronecker delta 

function 

Proof:  Let 𝑓(𝑥) be the original function, then the differential transform of 𝑓(𝑥) is given by:  

                                                    𝐹(𝑘) =
1

𝑘!

𝑑𝑘𝑥𝑛

𝑑𝑥𝑘
|

𝑥=0

 

But from the differentiation rule, we have 

𝑑𝑘𝑥𝑛

𝑑𝑥𝑘
= 𝑛(𝑛 −  1)(𝑛 − 2) … … . (𝑛 −  𝑘 + 1)𝑥(𝑛−𝑘) 

 𝐹(𝑘) =
1

𝑘!
𝑛(𝑛 −  1)(𝑛 − 2) … … . (𝑛 −  𝑘 + 1)𝑥(𝑛−𝑘)|

𝑥=0
 

𝐼𝑓  𝑛 =  𝑘, 𝑤𝑒 𝑔𝑒𝑡   

𝐹(𝑘) =
1

𝑘!
𝑘(𝑘 −  1)(𝑘 − 2). . . . . . . 1|

𝑥=0
 =     1 

𝐼𝑓 𝑛 ≠  𝑘, 𝑎𝑛𝑑 𝑥 =  0 𝑤𝑒 𝑔𝑒𝑡  𝐹(𝑘) =  0 



12 
 

𝑇ℎ𝑒𝑛:                                𝐹(𝑘) = 𝛿(𝑘 − 𝑛)   = {
1, 𝑘 = 𝑛
0, 𝑘 ≠ 𝑛

                            ∎ 

Theorem 7. The Constant function:    𝐼𝑓 𝑓(𝑥) = 1  , 𝑡ℎ𝑒𝑛         𝐹(𝑘) =  𝛿(𝑘) 

Proof:  Let 𝑓(𝑥) be the original function, then the differential transform of 𝑓(𝑥) is given by:  

                                                    𝐹(𝑘) =
1

𝑘!

𝑑𝑘1

𝑑𝑥𝑘|
𝑥=0

  

But we know that   1 = 𝑥0 so we can denote 0 for 𝑛 in The Polynomial function and have:    

                                                    𝐹(𝑘) =
1

𝑘!

𝑑𝑘𝑥𝑛

𝑑𝑥𝑘
|

𝑥=0

, 𝑤ℎ𝑒𝑟𝑒 𝑛 = 0 

𝑇ℎ𝑒𝑛:                                         𝐹(𝑘) = 𝛿(𝑘 − 0)   =  𝛿(𝑘)                            ∎ 

Theorem 8. The linear function: 𝐼𝑓 𝑓(𝑥) = 𝑥  , 𝑡ℎ𝑒𝑛         𝐹(𝑘) =  𝛿(𝑘 − 1) 

Proof:  Let 𝑓(𝑥) be the original function, then the differential transform of 𝑓(𝑥) is given by:  

                                                    𝐹(𝑘) =
1

𝑘!

𝑑𝑘𝑥

𝑑𝑥𝑘|
𝑥=0

  

But we know that   𝑥 = 𝑥1 so we can denote 1 for 𝑛 in The Polynomial function and have:    

                                                    𝐹(𝑘) =
1

𝑘!

𝑑𝑘𝑥1

𝑑𝑥𝑘
|

𝑥=0

, 𝑤ℎ𝑒𝑟𝑒 𝑛 = 1 

𝑇ℎ𝑒𝑛:                                         𝐹(𝑘) = 𝛿(𝑘 − 1)                                ∎ 

 

Theorem 9. Multiplication of two functions:  

𝐼𝑓 𝑓(𝑥) = 𝑔(𝑥) ℎ(𝑥),       𝑡ℎ𝑒𝑛         𝐹(𝑘)  =  ∑ 𝐺(𝑟) 𝐻(𝑘 −  𝑟)

𝑘

𝑟=0

 

Proof: Let 𝑓(𝑥) be the original function, then from the Leibnitz formula for 

the 𝑛th derivative of a product we have:  
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𝑑𝑘(𝑔(𝑥)ℎ(𝑥))

𝑑𝑥𝑘
=  ∑ (

𝑘
𝑟

)

𝑘

𝑟=0

𝑑𝑟𝑔(𝑥)

𝑑𝑥𝑟

𝑑𝑘 − 𝑟ℎ(𝑥)

𝑑𝑥𝑘 − 𝑟
 

Now, by using the previous formula the differential transform of 𝑓(𝑥) is given by: 

                                                    𝐹(𝑘) =
1

𝑘!

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
|

𝑥=0
  

                                                    𝐹(𝑘) =
1

𝑘!
[∑ (

𝑘
𝑟

)

𝑘

𝑟=0

𝑑𝑘𝑔(𝑥)

𝑑𝑥𝑟

𝑑𝑘 − 𝑟ℎ(𝑥)

𝑑𝑥𝑘 − 𝑟
]|

𝑥=0

 

                                                    𝐹(𝑘) =
1

𝑘!
[∑

𝑘!

(𝑘 − 𝑟)!  𝑟!

𝑑𝑟𝑔(𝑥)

𝑑𝑥𝑟

𝑑𝑘 − 𝑟ℎ(𝑥)

𝑑𝑥𝑘 − 𝑟

𝑘

𝑟=0

]|

𝑥=0

 

                                                    𝐹(𝑘) =
1

𝑘!
𝑘! [∑

1

𝑟!

𝑑𝑟𝑔(𝑥)

𝑑𝑥𝑟

1

(𝑘 − 𝑟)!

𝑑𝑘 − 𝑟ℎ(𝑥)

𝑑𝑥𝑘 − 𝑟

𝑘

𝑟=0

]|

𝑥=0

 

                                                    𝐹(𝑘) =  ∑ 𝐺(𝑟)𝐻(𝑘 −  𝑟)

𝑘

𝑟=0

                               ∎ 

Theorem 10. The Exponential function:  𝐼𝑓 𝑓(𝑥)  =  𝑒𝜆𝑥,         𝑡ℎ𝑒𝑛     𝐹 (𝑘)  =  
𝜆𝑘

𝑘!
 

Proof:  Let 𝑓(𝑥) be the original function, then the differential transform of 𝑓(𝑥) is given by:  

                                                    𝐹(𝑘) =
1

𝑘!

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
|

𝑥=0

 

                                                    𝐹(𝑘) =
1

𝑘!

𝑑𝑘𝑒𝜆𝑥

𝑑𝑥𝑘
|

𝑥=0

 

                                                    𝐹(𝑘) =
𝜆𝑘

𝑘!
𝑒𝜆𝑥|

𝑥=0

 

                                                    𝐹(𝑘) =
𝜆𝑘

𝑘!
                                  ∎ 
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Theorem 11:  𝐼𝑓 𝑓(𝑥)  =  (1 + 𝑥)𝑐,   𝑡ℎ𝑒𝑛   𝐹 (𝑘)  =  
𝑐(𝑐 − 1).......(𝑐 − 𝑘+1)

𝑘!
 

Proof:  Let 𝑓(𝑥) be the original function, then the differential transform of 𝑓(𝑥) is given by:  

                                                    𝐹(𝑘) =
1

𝑘!

𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
|

𝑥=0

 

                                                    𝐹(𝑘) =
1

𝑘!

𝑑𝑘(1 + 𝑥)𝑐

𝑑𝑥𝑘
|

𝑥=0

 

                                                    𝐹(𝑘) =
𝑐 (𝑐 −  1) (𝑐 −  2) . . . . (𝑐 −  𝑘 + 1)(1 + 𝑥)𝑐 − 𝑘

𝑘!
|

𝑥=0

 

                                                    𝐹(𝑘) =
𝑐 (𝑐 −  1) (𝑐 −  2) . . . . (𝑐 −  𝑘 + 1)

𝑘!
 

𝐹(𝑘) = 𝐶𝑘
𝑐
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3. Numerical Applications 

3.1. First order ODEs  

Application 1: Consider the first-order differential equation  𝑦′ − 𝑦 = 0 

with the initial condition 𝑦(0) = 1 , 

We apply DTM, with initial conditions 𝑌(0) = 1   

𝑌(𝑘 + 1) =  
1

(𝑘 + 1)
𝑌(𝑘) 

Put 𝑘 = 0 , 𝑌(1) = 1 

Put 𝑘 = 1 , 𝑌(2) =
1

2
=

1

2!
 

Put 𝑘 = 2 , 𝑌(3) =
1

6
=

1

3!
 

Put 𝑘 = 3 , 𝑌(4) =
1

24
=

1

4!
    

Put 𝑘 = 4 , 𝑌(5) =
1

120
=

1

5!
 

Put 𝑘 = 5 , 𝑌(6) =
1

720
=

1

6!
 

Put 𝑘 = 6 , 𝑌(7) =
1

5040
=

1

7!
 

Put 𝑘 = 7 , 𝑌(8) =
1

40320
=

1

8!
    and so on   

Therefore, the closed form of the solution can be easily written as:  

𝑦(𝑥) =  ∑ 𝑌(𝑘)𝑥𝑘 

𝑘=∞

𝑘=0

= 1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 +

1

4!
𝑥4 + ⋯ +

1

𝑛!
𝑥𝑛 = 𝑒𝑥 

Which is the exact solution. (Tanriverdi & Ağırağaç, 2018). 

Application 2: Consider the first-order differential equation  𝑦′ − 𝑦 = 𝑒𝑥 

with the initial condition 𝑦(0) = 0 , 

We apply DTM, with initial conditions 𝑌(0) = 0 , 
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𝑌(𝑘 + 1) =  
1

(𝑘 + 1)
[ 𝑌(𝑘) +

1

𝑘!
] 

Put 𝑘 = 0 , 𝑌(1) = 1 

Put 𝑘 = 1 , 𝑌(2) = 1 

Put 𝑘 = 2 , 𝑌(3) =
1

2
=

1

2!
 

Put 𝑘 = 3 , 𝑌(4) =
1

6
=

1

3!
    

Put 𝑘 = 4 , 𝑌(5) =
1

24
=

1

4!
   and so on  

Therefore, the closed form of the solution can be easily written as:  

𝑦(𝑥) =  ∑ 𝑌(𝑘)𝑥𝑘 

𝑘=𝑛

𝑘=0

= 𝑥 + 𝑥2 +
1

2!
𝑥3 +

1

3!
𝑥4 +

1

4!
𝑥5 … +

1

𝑛!
𝑥𝑛+1  

= 𝑥 [1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 +

1

4!
𝑥4 + ⋯ +

1

𝑛!
𝑥𝑛 ] = 𝑥𝑒𝑥 

Which is the exact solution. (Tanriverdi & Ağırağaç, 2018) 

3.2. Second-order ODEs 

Application 1: Consider a second-order differential equation  𝑦″ + 3𝑦′ + 2𝑦 = 24 

with the initial condition 𝑦(0) = 10 , 𝑦′(0) = 0 

We apply DTM, with initial conditions 𝑌(0) = 10 , 𝑌(1) = 0 

𝑌(𝑘 + 1) =  
1

(𝑘 + 1)(𝑘 + 2)
[ 3− (𝑘 + 1) 𝑌(𝑘 + 1) − 2 𝑌(𝑘) + 24(𝛿)] 

Put 𝑘 = 0 , 𝑌(1) = 0 

Put 𝑘 = 1 , 𝑌(2) = 10 

Put 𝑘 = 2 , 𝑌(3) = 10−  

Put 𝑘 = 3 , 𝑌(4) =
70

12
   and so on  
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Therefore, the closed form of the solution can be easily written as (Patil & Khambayat, 

2015):  

𝑦(𝑥) =  ∑ 𝑌(𝑘)𝑥𝑘 

𝑘=2

𝑘=0

= 10 + 10𝑥2 − 10𝑥3 +
70

12
𝑥4 + ⋯ 

Application 2: Consider a second-order differential equation  𝑦″ − 2𝑦′ + 5𝑦 = 0 

with the initial condition 𝑦(0) = 1−  , 𝑦′(0) = 7 

We apply DTM, with initial conditions 𝑌(0) = 1−  , 𝑌(1) = 7 

𝑌(𝑘 + 2) =  
1

(𝑘 + 1)(𝑘 + 2)
[2(𝑘 + 1) 𝑌(𝑘 + 1) − 5 𝑌(𝑘)] 

Put 𝑘 = 0 , 𝑌(2) =
19

2
 

Put 𝑘 = 1 , 𝑌(3) =
1

2
 

Put 𝑘 = 2 , 𝑌(4) =
89−

24
   and so on  

Therefore, the closed form of the solution can be easily written as: (Patil & Khambayat, 

2015) 

𝑦(𝑥) =  ∑ 𝑌(𝑘)𝑥𝑘 

𝑘=∞

𝑘=0

= 1− + 7𝑥 +
19

2
𝑥2 +

1

2
𝑥3 −

89

24
𝑥4 + ⋯ 

3.3. Third-order ODEs 

Application 1: Consider a third-order differential equation  𝑦‴ + 2𝑦″ − 𝑦′ − 2𝑦 = 𝑒𝑥 

with the initial condition 𝑦(0) = 1 , 𝑦′(0) = 2 , 𝑦″(0) = 0  

We apply DTM, with initial conditions 𝑦(0) = 1 , 𝑦′(0) = 2 , 𝑦″(0) = 0 

𝑌(𝑘 + 3) =  
1

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)
[(𝑘 + 1)𝑌(𝑘 + 1) − 2(𝑘 + 1)(𝑘 + 2)𝑌(𝑘 + 2) + 2𝑌(𝑘) +

1

𝑘!
] 

Put  𝑌(0) = 1 

Put 𝑘 = 0 , 𝑌(1) = 2 
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Put 𝑘 = 1 , 𝑌(2) = 0 

Put 𝑘 = 2 , 𝑌(3) =
5

6
 

Put 𝑘 = 3 , 𝑌(4) = −
5

24
    

Put 𝑘 = 4 , 𝑌(5) =
12

15
 

Put 𝑘 = 5 , 𝑌(6) = −
13

360
 

Put 𝑘 = 6 , 𝑌(7) =
59

5040
   and so on  

Therefore, the closed form of the solution can be easily written as:  

𝑦(𝑥) =  ∑ 𝑌(𝑘)𝑥𝑘 

𝑘=∞

𝑘=0

= 1 + 2𝑥 +
5

6
𝑥3 −

5

24
𝑥4 +

2

15
𝑥5 −

13

360
𝑥6 +

59

5040
𝑥8 + ⋯ 

 

This figure compare between DTMs of order 2, 5, 10, and 15 and the actual solution. 
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The data shown in Figure above clearly demonstrate the high accuracy of DTM of order 

15. We will notice that in this differential equation, the higher order of DTM is required to provide 

an exact solution. (Batiha & Batiha, 2011) 

Application 2: Consider a third-order differential equation  𝑦‴ + 𝑦 = 0  (Agboola, 

Opanuga, & Gbadeyan, 2015) 

with the initial condition 𝑦(0) = 1 , 𝑦′(0) = 1−  , 𝑦″(0) = 1  

We apply DTM, with initial conditions 𝑦(0) = 1 , 𝑦′(0) = 1−  , 𝑦″(0) = 1 

𝑌(𝑘 + 3) =  −
𝑌(𝑘)

(𝑘 + 3)(𝑘 + 2)(𝑘 + 1)
 

Put  𝑌(0) = 1 

Put 𝑘 = 0 , 𝑌(1) = 1−  

Put 𝑘 = 1 , 𝑌(2) =
1

2
 

Put 𝑘 = 2 , 𝑌(3) = −
1

6
 

Put 𝑘 = 3 , 𝑌(4) =
1

24
    

Put 𝑘 = 4 , 𝑌(5) = −
1

120
 

Put 𝑘 = 5 , 𝑌(6) =
1

720
 

Put 𝑘 = 6 , 𝑌(7) = −
1

5040
    

Put 𝑘 = 7 , 𝑌(8) =
1

40320
   and so on  

Therefore, the closed form of the solution can be easily written as:  

𝑦(𝑥) =  ∑ 𝑌(𝑘)𝑥𝑘 

𝑘=∞

𝑘=0

= 1 − 𝑥 +
𝑥2

2
−

𝑥3

6
+

𝑥4

24
−

𝑥5

120
+

𝑥6

720
−

𝑥7

5040
+

𝑥8

40320
− ⋯ 
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Application 3: Consider a third-order differential equation  𝑦‴ − 𝑒𝑥 = 0 (Agboola, 

Opanuga, & Gbadeyan, 2015) 

with the initial condition 𝑦(0) = 3 , 𝑦′(0) = 1 , 𝑦″(0) = 5  

We apply DTM, with initial conditions 𝑦(0) = 3 , 𝑦′(0) = 1 , 𝑦″(0) = 

𝑌(𝑘 + 3) =  
1

(𝑘 + 3)!

1

𝑘!
 

Put  𝑌(0) = 3 

Put 𝑘 = 0 , 𝑌(1) = 1 

Put 𝑘 = 1 , 𝑌(2) =
5

2
 

Put 𝑘 = 2 , 𝑌(3) =
1

6
 

Put 𝑘 = 3 , 𝑌(4) =
1

24
    

Put 𝑘 = 4 , 𝑌(5) =
1

120
 

Put 𝑘 = 5 , 𝑌(6) =
1

720
 

Put 𝑘 = 6 , 𝑌(7) =
1

5040
    

Put 𝑘 = 7 , 𝑌(8) =
1

40320
   and so on  

Therefore, the closed form of the solution can be easily written as:  

𝑦(𝑥) =  ∑ 𝑌(𝑘)𝑥𝑘 

𝑘=∞

𝑘=0

= 1 + 𝑥 +
𝑥2

2
+

𝑥3

6
+

𝑥4

24
+

𝑥5

120
+

𝑥6

720
+

𝑥7

5040
+

𝑥8

40320
+ ⋯ 
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4. Summary 
 

The Differential Transformation Method (DTM) was effectively used in this research to 

obtain precise and approximate solutions to the first, second, and third linear differential equations. 

And some basic theorems of DTM are given and proved. 

 The approach was used without any linearization, perturbation, or restricted assumptions. 

As a result, it is not influenced by calculation round-off mistakes and does not necessitate vast 

amounts of computer memory and time. Unlike other numerical approaches, this method yields a 

closed-form solution. 

This approach has a distinct benefit over any purely numerical method in that it provides a 

smooth, functional form of the answer across a time step. It is possible to infer that DTM is 

extremely powerful and efficient in finding analytical and numerical solutions to a large range of 

linear differential equations. 
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