# Ours # location: server location: local data: type: semantic_seg name: spacenet2 num_classes: 2 window_size: 7 image_size: 128 #pre-train: 32, fine_tune: 96 time_steps: 2 weights: [0.9, 1.0] # channels: B02|B03|B04|B05|B06|B07|B08|B11|B12|B8A channels: B02|B03|B04|B05|B06|B07|B08 local: model_save_dir: /home/native/projects/data/smart_watch/models/ train_dir: /media/native/data2/data/spacenet2 test_dir: /media/native/data2/data/spacenet2 train_coco_json: /media/native/data/data/smart_watch_dvc/extern/onera_2018/onera_train.kwcoco.json test_coco_json: /media/native/data/data/smart_watch_dvc/extern/onera_2018/onera_test.kwcoco.json val_dir: server: model_save_dir: /data4/peri/smart_watch/models/ train_dir: /media/native/data2/data/spacenet2/ test_dir: /media/native/data2/data/spacenet2/ val_dir: /media/native/data2/data/spacenet2/ train_coco_json: /data4/datasets/smart_watch_dvc/extern/onera_2018/onera_train.kwcoco.json test_coco_json: /data4/datasets/smart_watch_dvc/extern/onera_2018/onera_test.kwcoco.json training: backbone: resnet34 #resnet18 #resnet101, resnet50, resnet34 model_name: deeplab #shallow_seg, deeplabWS, deeplab, resnet, resnet_enc, resnetGNWS, deeplab_diff model_feats_channels: [64, 128, 256, 512, 256] #[32, 32, 64, 64, 128], [64, 64, 128, 256, 512], [32, 32, 64, 128, 256], [64, 128, 256, 512, 1024] # this needs to match the correct number of layers in the model gn_n_groups: 32 num_channels: 8 out_features_dim: 10 weight_std: True beta: False # pretrained: /home/native/projects/data/smart_watch/models/experiments_onera/tasks_experiments_onera_2021-10-18-13:27/experiments_epoch_0_loss_11.28138166103723_valmF1_0.6866047574166068_valChangeF1_0.49019877611815305_time_2021-10-18-14:15:27.pth pretrained: False distributed: False learning_rate: 0.00001 # best: # resume: /home/native/projects/data/smart_watch/models/experiments_spacenet2/tasks_experiments_spacenet2_2021-10-29-17:54/experiments_epoch_0_loss_32732.20482291104_valmF1_0.8900609360710967_valChangeF1_0.8104937131673395_mIoU_0.8112083390956064_time_2021-10-29-18:09:07.pth # resume: /home/native/projects/data/smart_watch/models/experiments_spacenet2/tasks_experiments_spacenet2_2021-11-02-13:30/experiments_epoch_95_loss_0.8890453032600931_valmF1_0.6582615156434595_valChangeF1_0.38575499409997405_mIoU_0.5547354029956185_time_2021-11-02-22:13:48.pth # resume: /home/native/projects/data/smart_watch/models/experiments_spacenet2/tasks_experiments_spacenet2_2021-11-04-10:24/experiments_epoch_7_loss_64093.52139156993_valmF1_0.7984270642663884_valChangeF1_0.6446711774859379_mIoU_0.6921934070638721_time_2021-11-04-12:35:15.pth resume: False train_val_test_split: [0.95, 0.02, 0.03] epochs: 200 start_epoch: 0 batch_size: 16 drop_last_batch: True momentum: 0.6 weight_decay: 0.0001 num_workers: 0 test_with_full_supervision: 1 model_single_input: False model_diff_input: True n_samples: 5 high_confidence_threshold: train_cutoff: 0.4 val_cutoff: 0.4 train_low_cutoff: 0.0 val_low_cutoff: 0.0 evaluation: use_crf: False crf_t: 1 crf_scale_factor: 1 inference_window: 13 batch_size: 16 procedures: train: False validate: True