""" Ignore: python -m kwplot.cli.gifify \ -i /home/local/KHQ/jon.crall/data/work/toy_change/_overfit_viz7/ \ -o /home/local/KHQ/jon.crall/data/work/toy_change/_overfit_viz7.gif nh.initializers.functional.apply_initializer(self, torch.nn.init.kaiming_normal, {}) # How to get data we need to step back into the dataloader # to debug the batch item = batch[0] item['frames'][0]['class_idxs'].unique() item['frames'][1]['class_idxs'].unique() item['frames'][2]['class_idxs'].unique() # print(item['frames'][0]['change'].unique()) print(item['frames'][1]['change'].unique()) print(item['frames'][2]['change'].unique()) tr = item['tr'] self = torch_dset kwplot.imshow(self.draw_item(item), fnum=3) kwplot.imshow(item['frames'][1]['change'].cpu().numpy(), fnum=4) Ignore: model = self model = self.to(0) for item in batch: for frame in item['frames']: modes = frame['modes'] for key in modes.keys(): modes[key] = modes[key].to(0) out = model.forward_step(batch) batch2 = [ub.dict_diff(item, {'tr', 'index', 'video_name', 'video_id'}) for item in batch[0:1]] for item in batch2: item['frames'] = [ ub.dict_diff(frame, { 'gid', 'date_captured', 'sensor_coarse', 'change', 'ignore', 'class_idxs', }) for frame in item['frames'] ] traced = torch.jit.trace_module(model, {'forward_step': (batch2,)}, strict=False) traced = torch.jit.trace_module(model, {'forward': (images,)}, strict=False) import timerit ti = timerit.Timerit(5, bestof=1, verbose=2) for timer in ti.reset('time'): model.forward(images) for timer in ti.reset('time'): traced.forward(images) # traced = torch.jit.trace(model.forward, batch) traced = torch.jit.trace_module(model, {'forward_step': batch2}) """