#!/bin/bash PHASE2_DATA_DPATH_SRC=/flash/smart_data_dvc PHASE2_EXPT_DPATH_SRC=$HOME/data/dvc-repos/smart_expt_dvc PHASE2_DATA_DPATH=/flash/smart_data_dvc PHASE2_EXPT_DPATH=/data/smart_expt WORKDIR=$PHASE2_EXPT_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop6 KWCOCO_BUNDLE_DPATH=$PHASE2_DATA_DPATH/$DATASET_CODE TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/data_train_split1.kwcoco.zip VALI_FPATH=$KWCOCO_BUNDLE_DPATH/data_vali_split1.kwcoco.zip EXPERIMENT_NAME=Drop4_BAS_S2L8_NoDecoderHetModel_TESTNOKEEP DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME docker run \ --user $(id -u):$(id -g) \ --tty --shm-size=1g --memory=30g --cpus=6 --gpus='"device=3"' \ --runtime=nvidia \ --mount type=bind,source="$PHASE2_DATA_DPATH_SRC",target="$PHASE2_DATA_DPATH" \ --mount type=bind,source="$PHASE2_EXPT_DPATH_SRC",target="$PHASE2_EXPT_DPATH" \ --mount type=bind,source="$(pwd)/config_common.yaml",target="/config_common.yaml" \ --mount type=bind,source="/data/connor.greenwell/cache",target="/.cache" \ "feature/decoderless_heterogeneous_model" \ conda run --no-capture-output -n watch \ python -m geowatch.tasks.fusion fit \ --config=/config_common.yaml \ --model.init_args.name=$EXPERIMENT_NAME \ --data.train_dataset="$TRAIN_FPATH" \ --data.vali_dataset="$VALI_FPATH" \ --data.num_workers=5 \ --data.verbose=true \ --trainer.default_root_dir="$DEFAULT_ROOT_DIR" \ --trainer.max_steps=100 \ --trainer.accelerator="gpu" \ --trainer.devices=1 \ --trainer.precision=16 # --print_config # --trainer.strategy="ddp" \ # --data.use_grid_cache=False \