import numpy as np from .common import TYPES1, Benchmark class ScalarMath(Benchmark): # Test scalar math, note that each of these is run repeatedly to offset # the function call overhead to some degree. params = [TYPES1] param_names = ["type"] def setup(self, typename): self.num = np.dtype(typename).type(2) self.int32 = np.int32(2) self.int32arr = np.array(2, dtype=np.int32) def time_addition(self, typename): n = self.num res = n + n + n + n + n + n + n + n + n + n def time_addition_pyint(self, typename): n = self.num res = n + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 def time_multiplication(self, typename): n = self.num res = n * n * n * n * n * n * n * n * n * n def time_power_of_two(self, typename): n = self.num res = n**2, n**2, n**2, n**2, n**2, n**2, n**2, n**2, n**2, n**2 def time_abs(self, typename): n = self.num res = abs(abs(abs(abs(abs(abs(abs(abs(abs(abs(n)))))))))) def time_add_int32_other(self, typename): # Some mixed cases are fast, some are slow, this documents these # differences. (When writing, it was fast if the type of the result # is one of the inputs.) int32 = self.int32 other = self.num int32 + other int32 + other int32 + other int32 + other int32 + other def time_add_int32arr_and_other(self, typename): # `arr + scalar` hits the normal ufunc (array) paths. int32 = self.int32arr other = self.num int32 + other int32 + other int32 + other int32 + other int32 + other def time_add_other_and_int32arr(self, typename): # `scalar + arr` at some point hit scalar paths in some cases, and # these paths could be optimized more easily int32 = self.int32arr other = self.num other + int32 other + int32 other + int32 other + int32 other + int32 class ScalarStr(Benchmark): # Test scalar to str conversion params = [TYPES1] param_names = ["type"] def setup(self, typename): self.a = np.array([100] * 100, dtype=typename) def time_str_repr(self, typename): res = [str(x) for x in self.a]