.. _basics.dispatch: ******************************* Writing custom array containers ******************************* Numpy's dispatch mechanism, introduced in numpy version v1.16 is the recommended approach for writing custom N-dimensional array containers that are compatible with the numpy API and provide custom implementations of numpy functionality. Applications include `dask `_ arrays, an N-dimensional array distributed across multiple nodes, and `cupy `_ arrays, an N-dimensional array on a GPU. To get a feel for writing custom array containers, we'll begin with a simple example that has rather narrow utility but illustrates the concepts involved. >>> import numpy as np >>> class DiagonalArray: ... def __init__(self, N, value): ... self._N = N ... self._i = value ... def __repr__(self): ... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" ... def __array__(self, dtype=None, copy=None): ... if copy is False: ... raise ValueError( ... "`copy=False` isn't supported. A copy is always created." ... ) ... return self._i * np.eye(self._N, dtype=dtype) Our custom array can be instantiated like: >>> arr = DiagonalArray(5, 1) >>> arr DiagonalArray(N=5, value=1) We can convert to a numpy array using :func:`numpy.array` or :func:`numpy.asarray`, which will call its ``__array__`` method to obtain a standard ``numpy.ndarray``. >>> np.asarray(arr) array([[1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.]]) The ``__array__`` method can optionally accept a `dtype` argument. If provided, this argument specifies the desired data type for the resulting NumPy array. Your implementation should attempt to convert the data to this `dtype` if possible. If the conversion is not supported, it's generally best to fall back to a default type or raise a `TypeError` or `ValueError`. Here's an example demonstrating its use with `dtype` specification: >>> np.asarray(arr, dtype=np.float32) array([[1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.]], dtype=float32) If we operate on ``arr`` with a numpy function, numpy will again use the ``__array__`` interface to convert it to an array and then apply the function in the usual way. >>> np.multiply(arr, 2) array([[2., 0., 0., 0., 0.], [0., 2., 0., 0., 0.], [0., 0., 2., 0., 0.], [0., 0., 0., 2., 0.], [0., 0., 0., 0., 2.]]) Notice that the return type is a standard ``numpy.ndarray``. >>> type(np.multiply(arr, 2)) How can we pass our custom array type through this function? Numpy allows a class to indicate that it would like to handle computations in a custom-defined way through the interfaces ``__array_ufunc__`` and ``__array_function__``. Let's take one at a time, starting with ``__array_ufunc__``. This method covers :ref:`ufuncs`, a class of functions that includes, for example, :func:`numpy.multiply` and :func:`numpy.sin`. The ``__array_ufunc__`` receives: - ``ufunc``, a function like ``numpy.multiply`` - ``method``, a string, differentiating between ``numpy.multiply(...)`` and variants like ``numpy.multiply.outer``, ``numpy.multiply.accumulate``, and so on. For the common case, ``numpy.multiply(...)``, ``method == '__call__'``. - ``inputs``, which could be a mixture of different types - ``kwargs``, keyword arguments passed to the function For this example we will only handle the method ``__call__`` >>> from numbers import Number >>> class DiagonalArray: ... def __init__(self, N, value): ... self._N = N ... self._i = value ... def __repr__(self): ... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" ... def __array__(self, dtype=None, copy=None): ... if copy is False: ... raise ValueError( ... "`copy=False` isn't supported. A copy is always created." ... ) ... return self._i * np.eye(self._N, dtype=dtype) ... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): ... if method == '__call__': ... N = None ... scalars = [] ... for input in inputs: ... if isinstance(input, Number): ... scalars.append(input) ... elif isinstance(input, self.__class__): ... scalars.append(input._i) ... if N is not None: ... if N != input._N: ... raise TypeError("inconsistent sizes") ... else: ... N = input._N ... else: ... return NotImplemented ... return self.__class__(N, ufunc(*scalars, **kwargs)) ... else: ... return NotImplemented Now our custom array type passes through numpy functions. >>> arr = DiagonalArray(5, 1) >>> np.multiply(arr, 3) DiagonalArray(N=5, value=3) >>> np.add(arr, 3) DiagonalArray(N=5, value=4) >>> np.sin(arr) DiagonalArray(N=5, value=0.8414709848078965) At this point ``arr + 3`` does not work. >>> arr + 3 Traceback (most recent call last): ... TypeError: unsupported operand type(s) for +: 'DiagonalArray' and 'int' To support it, we need to define the Python interfaces ``__add__``, ``__lt__``, and so on to dispatch to the corresponding ufunc. We can achieve this conveniently by inheriting from the mixin :class:`~numpy.lib.mixins.NDArrayOperatorsMixin`. >>> import numpy.lib.mixins >>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin): ... def __init__(self, N, value): ... self._N = N ... self._i = value ... def __repr__(self): ... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" ... def __array__(self, dtype=None, copy=None): ... if copy is False: ... raise ValueError( ... "`copy=False` isn't supported. A copy is always created." ... ) ... return self._i * np.eye(self._N, dtype=dtype) ... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): ... if method == '__call__': ... N = None ... scalars = [] ... for input in inputs: ... if isinstance(input, Number): ... scalars.append(input) ... elif isinstance(input, self.__class__): ... scalars.append(input._i) ... if N is not None: ... if N != input._N: ... raise TypeError("inconsistent sizes") ... else: ... N = input._N ... else: ... return NotImplemented ... return self.__class__(N, ufunc(*scalars, **kwargs)) ... else: ... return NotImplemented >>> arr = DiagonalArray(5, 1) >>> arr + 3 DiagonalArray(N=5, value=4) >>> arr > 0 DiagonalArray(N=5, value=True) Now let's tackle ``__array_function__``. We'll create dict that maps numpy functions to our custom variants. >>> HANDLED_FUNCTIONS = {} >>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin): ... def __init__(self, N, value): ... self._N = N ... self._i = value ... def __repr__(self): ... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" ... def __array__(self, dtype=None, copy=None): ... if copy is False: ... raise ValueError( ... "`copy=False` isn't supported. A copy is always created." ... ) ... return self._i * np.eye(self._N, dtype=dtype) ... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): ... if method == '__call__': ... N = None ... scalars = [] ... for input in inputs: ... # In this case we accept only scalar numbers or DiagonalArrays. ... if isinstance(input, Number): ... scalars.append(input) ... elif isinstance(input, self.__class__): ... scalars.append(input._i) ... if N is not None: ... if N != input._N: ... raise TypeError("inconsistent sizes") ... else: ... N = input._N ... else: ... return NotImplemented ... return self.__class__(N, ufunc(*scalars, **kwargs)) ... else: ... return NotImplemented ... def __array_function__(self, func, types, args, kwargs): ... if func not in HANDLED_FUNCTIONS: ... return NotImplemented ... # Note: this allows subclasses that don't override ... # __array_function__ to handle DiagonalArray objects. ... if not all(issubclass(t, self.__class__) for t in types): ... return NotImplemented ... return HANDLED_FUNCTIONS[func](*args, **kwargs) ... A convenient pattern is to define a decorator ``implements`` that can be used to add functions to ``HANDLED_FUNCTIONS``. >>> def implements(np_function): ... "Register an __array_function__ implementation for DiagonalArray objects." ... def decorator(func): ... HANDLED_FUNCTIONS[np_function] = func ... return func ... return decorator ... Now we write implementations of numpy functions for ``DiagonalArray``. For completeness, to support the usage ``arr.sum()`` add a method ``sum`` that calls ``numpy.sum(self)``, and the same for ``mean``. >>> @implements(np.sum) ... def sum(arr): ... "Implementation of np.sum for DiagonalArray objects" ... return arr._i * arr._N ... >>> @implements(np.mean) ... def mean(arr): ... "Implementation of np.mean for DiagonalArray objects" ... return arr._i / arr._N ... >>> arr = DiagonalArray(5, 1) >>> np.sum(arr) 5 >>> np.mean(arr) 0.2 If the user tries to use any numpy functions not included in ``HANDLED_FUNCTIONS``, a ``TypeError`` will be raised by numpy, indicating that this operation is not supported. For example, concatenating two ``DiagonalArrays`` does not produce another diagonal array, so it is not supported. >>> np.concatenate([arr, arr]) Traceback (most recent call last): ... TypeError: no implementation found for 'numpy.concatenate' on types that implement __array_function__: [] Additionally, our implementations of ``sum`` and ``mean`` do not accept the optional arguments that numpy's implementation does. >>> np.sum(arr, axis=0) Traceback (most recent call last): ... TypeError: sum() got an unexpected keyword argument 'axis' The user always has the option of converting to a normal ``numpy.ndarray`` with :func:`numpy.asarray` and using standard numpy from there. >>> np.concatenate([np.asarray(arr), np.asarray(arr)]) array([[1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.], [1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.]]) The implementation of ``DiagonalArray`` in this example only handles the ``np.sum`` and ``np.mean`` functions for brevity. Many other functions in the Numpy API are also available to wrap and a full-fledged custom array container can explicitly support all functions that Numpy makes available to wrap. Numpy provides some utilities to aid testing of custom array containers that implement the ``__array_ufunc__`` and ``__array_function__`` protocols in the ``numpy.testing.overrides`` namespace. To check if a Numpy function can be overridden via ``__array_ufunc__``, you can use :func:`~numpy.testing.overrides.allows_array_ufunc_override`: >>> from numpy.testing.overrides import allows_array_ufunc_override >>> allows_array_ufunc_override(np.add) True Similarly, you can check if a function can be overridden via ``__array_function__`` using :func:`~numpy.testing.overrides.allows_array_function_override`. Lists of every overridable function in the Numpy API are also available via :func:`~numpy.testing.overrides.get_overridable_numpy_array_functions` for functions that support the ``__array_function__`` protocol and :func:`~numpy.testing.overrides.get_overridable_numpy_ufuncs` for functions that support the ``__array_ufunc__`` protocol. Both functions return sets of functions that are present in the Numpy public API. User-defined ufuncs or ufuncs defined in other libraries that depend on Numpy are not present in these sets. Refer to the `dask source code `_ and `cupy source code `_ for more fully-worked examples of custom array containers. See also :doc:`NEP 18`.