Acta Crystallogr Sect E Struct Rep OnlineActa Crystallogr Sect E Struct Rep OnlineActa Cryst. EActa Crystallographica Section E: Structure Reports Online1600-5368International Union of Crystallography229047983414191hb688110.1107/S1600536812029510ACSEBHS1600536812029510Organic Papers5-(Adamantan-1-yl)-3-[(2-meth­oxy­eth­yl)sulfan­yl]-4-phenyl-4H-1,2,4-triazoleC21H27N3OSEl-EmamAli A.aAl-AbdullahEbtehal S.aAsiriHanadi H.aChantraprommaSuchadabFunHoong-Kunc*§Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi ArabiaCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, ThailandX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, MalaysiaCorrespondence e-mail: hkfun@usm.my

Thomson Reuters ResearcherID: A-5085-2009.

Thomson Reuters ResearcherID: A-3561-2009.

01820120472012047201268Pt 8e120800o2326o232627620122862012© El-Emam et al. 20122012This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.A full version of this article is available from Crystallography Journals Online.

In the title adamantyl derivative, C21H27N3OS, the terminal meth­oxy­ethyl unit is disordered over two orientations with a refined site-occupancy ratio of 0.846 (6):0.154 (6). The 1,2,4-triazole ring is statistically planar [r.m.s. deviation = 0.002 (2) Å] and the phenyl substituent is almost perpendicular to its mean plane [dihedral angle = 83.57 (11)°]. No directional inter­molecular inter­actions were observed in the crystal structure.

Related literature  

For the biological activity of adamantane derivatives, see: Kadi et al. (2010). For related adamantyl-1,2,4-triazole structures, see: Al-Abdullah et al. (2012); Almutairi et al. (2012); El-Emam et al. (2012). For substituted sulfanyl-1,2,4-triazole structures, see: Fun et al. (2011); Wang et al. (2011).

Experimental   <sec id="sec2.1.1"><title>Crystal data  

C21H27N3OS

M r = 369.53

Monoclinic,

a = 22.5107 (5) Å

b = 9.7642 (2) Å

c = 19.5594 (3) Å

β = 116.679 (1)°

V = 3841.43 (13) Å3

Z = 8

Cu Kα radiation

μ = 1.60 mm−1

T = 296 K

0.59 × 0.56 × 0.18 mm

Data collection  

Bruker SMART APEXII CCD diffractometer

Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.453, T max = 0.761

12922 measured reflections

3499 independent reflections

3075 reflections with I > 2σ(I)

R int = 0.028

Refinement  

R[F 2 > 2σ(F 2)] = 0.045

wR(F 2) = 0.130

S = 1.05

3499 reflections

245 parameters

H-atom parameters constrained

Δρmax = 0.22 e Å−3

Δρmin = −0.30 e Å−3

<p>Data collection: <italic>APEX2</italic> (Bruker, 2009<xref ref-type="bibr" rid="bb3"> ▶</xref>); cell refinement: <italic>SAINT</italic> (Bruker, 2009<xref ref-type="bibr" rid="bb3"> ▶</xref>); data reduction: <italic>SAINT</italic>; program(s) used to solve structure: <italic>SHELXTL</italic> (Sheldrick, 2008<xref ref-type="bibr" rid="bb7"> ▶</xref>); program(s) used to refine structure: <italic>SHELXTL</italic>; molecular graphics: <italic>SHELXTL</italic>; software used to prepare material for publication: <italic>SHELXTL</italic> and <italic>PLATON</italic> (Spek, 2009<xref ref-type="bibr" rid="bb8"> ▶</xref>).</p></sec></sec><sec sec-type="supplementary-material"><title>Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029510/hb6881sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029510/hb6881Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536812029510/hb6881Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6881).

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University is greatly appreciated. HKF and SC thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information Comment

In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives (Kadi et al., 2010), we synthesized the title compound (I) as a potential chemotherapeutic agent and herein its crystal structure is reported.

In the molecule of the title adamantyl derivative, C21H27N3OS, (Fig. 1) the terminal methoxyethyl unit is disordered over two orientations with the refined site-occupancy ratio of 0.845 (6):0.155 (6). The 1,2,4-triazole ring is planar with an r.m.s. deviation of 0.002 (2) Å. The phenyl substituent is almost perpendicular to the mean plane of the 1,2,4-triazole ring with the dihedral angle of 83.57 (11)°. The adamantyl group is planarly attached to the 1,2,4-triazole ring at atom position 5 or atom C2. The 2-(methoxyethyl)sulfanyl substituent is planarly attached to this five-membered ring with the torsion angle C1–S1–C19–C20 = 179.61 (15)°. The orientation of the terminal disordered methoxyethyl unit can be indicated by the torsion angles C21–O1–C20–C19 = -176.1 (2)° for the major component (A) and 127.7 (7)° for the minor component (B). The bond distances in (I) are comparable with those in related structures (Al-Abdullah et al., 2012; Almutairi et al., 2012; El-Emam et al., 2012; Fun et al., 2011 and Wang et al., 2011).

Even though no intermolecular hydrogen bond was observed in the crystal packing of (I), however the crystal packing was shown in Fig. 2 to illustrate the arrangement of the molecules.

Experimental

A mixture of 3-(adamantan-1-yl)-4-phenyl-4H-1,2,4-triazole-5-thiol (623 mg, 2 mmol), 1-bromo-2-methoxyethane (278 mg, 2 mmol) and anhydrous potassium carbonate (276 mg, 2 mmol) in N,N-dimethylformamide (5 ml) was stirred at room temperature for 24 h. Water (15 ml) was added and the mixture was stirred for 30 min. The separated crude product was filtered, washed with water, dried and crystallized from aqueous ethanol to yield 196 gm (53 %) of the title compound as colorless plate-shaped crystals, M.p. 428-430 K.

Refinement

All H atoms were placed in calculated positions with d(C-H) = 0.93 Å for aromatic (phenyl), 0.98 Å for aromatic (adamantyl), 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. The terminal methoxyethyl unit is disordered over two sites with refined site occupancies of 0.846 (6) and 0.154 (6).

Figures

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Open bonds show the minor disorder component.

The crystal packing of the title compound viewed along the b axis. Only the major component was shown.

Crystal data
C21H27N3OSF(000) = 1584
Mr = 369.53Dx = 1.278 Mg m3
Monoclinic, C2/cMelting point = 428–430 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54178 Å
a = 22.5107 (5) ÅCell parameters from 3499 reflections
b = 9.7642 (2) Åθ = 5.0–69.0°
c = 19.5594 (3) ŵ = 1.60 mm1
β = 116.679 (1)°T = 296 K
V = 3841.43 (13) Å3Plate, colorless
Z = 80.59 × 0.56 × 0.18 mm
Data collection
Bruker SMART APEXII CCD diffractometer3499 independent reflections
Radiation source: fine-focus sealed tube3075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 69.0°, θmin = 5.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −27→26
Tmin = 0.453, Tmax = 0.761k = −11→11
12922 measured reflectionsl = −23→23
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0809P)2 + 1.3248P] where P = (Fo2 + 2Fc2)/3
3499 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.30 e Å3
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å<sup>2</sup>)
xyzUiso*/UeqOcc. (<1)
S10.08715 (2)0.28171 (4)0.23891 (2)0.05409 (17)
N10.11945 (7)0.33435 (13)0.38845 (7)0.0413 (3)
N20.10327 (8)0.11543 (14)0.35822 (9)0.0532 (4)
N30.11921 (8)0.13061 (14)0.43546 (9)0.0526 (4)
O1A0.10717 (11)0.1555 (2)0.10375 (10)0.0672 (7)0.846 (6)
O1B0.0543 (8)0.1948 (10)0.0738 (6)0.076 (5)0.154 (6)
C10.10350 (8)0.23789 (17)0.33203 (9)0.0444 (4)
C20.12860 (8)0.26011 (16)0.45299 (9)0.0424 (3)
C30.14495 (8)0.31590 (16)0.53129 (9)0.0417 (3)
C40.13939 (12)0.19832 (18)0.58035 (11)0.0593 (5)
H4A0.09460.16160.55650.071*
H4B0.16980.12540.58350.071*
C50.15593 (12)0.2492 (2)0.66116 (11)0.0655 (5)
H5A0.15240.17270.69160.079*
C60.10653 (11)0.3612 (2)0.65583 (11)0.0627 (5)
H6A0.06160.32490.63200.075*
H6B0.11610.39310.70670.075*
C70.11237 (9)0.47934 (19)0.60849 (10)0.0529 (4)
H7A0.08120.55200.60530.063*
C80.09607 (8)0.42908 (18)0.52755 (9)0.0463 (4)
H8A0.09900.50500.49720.056*
H8B0.05100.39380.50300.056*
C90.21600 (9)0.3739 (2)0.57084 (11)0.0568 (4)
H9A0.24750.30350.57380.068*
H9B0.22010.44960.54110.068*
C100.23171 (9)0.4233 (2)0.65161 (11)0.0649 (5)
H10A0.27700.46040.67620.078*
C110.18282 (10)0.5350 (2)0.64632 (11)0.0629 (5)
H11A0.19320.56810.69720.076*
H11B0.18660.61130.61670.076*
C120.22647 (12)0.3049 (3)0.69881 (11)0.0755 (6)
H12A0.23750.33590.75020.091*
H12B0.25750.23330.70220.091*
C130.12558 (8)0.47952 (16)0.37871 (9)0.0433 (4)
C140.18701 (10)0.5351 (2)0.39749 (12)0.0607 (5)
H14A0.22470.48000.41520.073*
C150.19180 (14)0.6760 (2)0.38947 (15)0.0795 (7)
H15A0.23310.71540.40220.095*
C160.13615 (16)0.7570 (2)0.36300 (13)0.0793 (7)
H16A0.13990.85110.35890.095*
C170.07556 (13)0.6996 (2)0.34282 (12)0.0694 (6)
H17A0.03790.75490.32410.083*
C180.06922 (10)0.55996 (19)0.34984 (10)0.0544 (4)
H18A0.02760.52100.33530.065*
C190.07046 (11)0.1108 (2)0.19793 (11)0.0597 (5)
H19A0.10920.05330.22480.072*
H19B0.03370.07080.20400.072*
C200.05380 (13)0.1161 (3)0.11512 (13)0.0738 (6)
H20A0.03890.02630.09260.089*0.846 (6)
H20B0.01750.18000.08940.089*0.846 (6)
H20C0.07970.04240.10980.089*0.154 (6)
H20D0.00870.08370.09110.089*0.154 (6)
C210.08943 (16)0.1691 (3)0.02410 (14)0.0851 (7)
H21A0.12780.19670.01830.128*0.846 (6)
H21B0.05520.23700.00170.128*0.846 (6)
H21C0.07350.0829−0.00110.128*0.846 (6)
H21D0.08380.2477−0.00770.128*0.154 (6)
H21E0.13590.15470.05650.128*0.154 (6)
H21F0.07110.0899−0.00750.128*0.154 (6)
Atomic displacement parameters (Å<sup>2</sup>)
U11U22U33U12U13U23
S10.0784 (3)0.0442 (3)0.0448 (3)0.00191 (19)0.0322 (2)−0.00132 (15)
N10.0540 (7)0.0328 (6)0.0422 (7)0.0010 (5)0.0260 (6)0.0000 (5)
N20.0774 (10)0.0377 (7)0.0523 (8)−0.0018 (6)0.0360 (8)−0.0030 (6)
N30.0776 (10)0.0362 (7)0.0533 (8)0.0003 (6)0.0376 (8)0.0005 (6)
O1A0.0721 (14)0.0758 (13)0.0534 (10)−0.0075 (10)0.0280 (10)−0.0151 (8)
O1B0.123 (13)0.055 (5)0.065 (6)0.010 (6)0.056 (7)0.022 (5)
C10.0529 (8)0.0404 (8)0.0449 (8)0.0008 (6)0.0263 (7)−0.0019 (6)
C20.0520 (8)0.0356 (8)0.0456 (8)0.0027 (6)0.0272 (7)0.0032 (6)
C30.0490 (8)0.0377 (8)0.0413 (8)0.0026 (6)0.0228 (7)0.0023 (6)
C40.0881 (13)0.0434 (9)0.0560 (10)0.0048 (9)0.0408 (10)0.0079 (8)
C50.0989 (16)0.0556 (11)0.0519 (10)0.0053 (10)0.0425 (11)0.0125 (8)
C60.0718 (12)0.0775 (13)0.0489 (10)−0.0054 (10)0.0360 (9)−0.0048 (9)
C70.0591 (10)0.0553 (10)0.0441 (9)0.0095 (8)0.0232 (8)−0.0048 (7)
C80.0502 (8)0.0471 (9)0.0409 (8)0.0059 (7)0.0198 (7)−0.0012 (6)
C90.0474 (9)0.0705 (12)0.0529 (10)0.0028 (8)0.0229 (8)0.0019 (8)
C100.0480 (9)0.0863 (14)0.0494 (10)−0.0035 (9)0.0120 (8)−0.0056 (9)
C110.0776 (12)0.0604 (11)0.0467 (10)−0.0109 (9)0.0242 (9)−0.0126 (8)
C120.0768 (13)0.0928 (16)0.0453 (10)0.0270 (12)0.0172 (10)0.0131 (10)
C130.0617 (9)0.0335 (8)0.0406 (8)0.0006 (6)0.0282 (7)0.0013 (6)
C140.0665 (11)0.0519 (10)0.0701 (12)−0.0058 (8)0.0365 (10)0.0029 (8)
C150.1005 (17)0.0571 (13)0.0889 (16)−0.0289 (12)0.0497 (14)−0.0048 (11)
C160.141 (2)0.0356 (9)0.0696 (13)−0.0053 (12)0.0546 (15)0.0023 (9)
C170.1080 (17)0.0449 (10)0.0599 (11)0.0206 (11)0.0419 (12)0.0118 (8)
C180.0689 (11)0.0469 (9)0.0502 (9)0.0084 (8)0.0292 (8)0.0051 (7)
C190.0726 (12)0.0502 (10)0.0541 (10)−0.0017 (8)0.0264 (9)−0.0092 (8)
C200.0829 (15)0.0723 (15)0.0653 (13)−0.0105 (11)0.0325 (11)−0.0228 (11)
C210.132 (2)0.0667 (14)0.0634 (13)−0.0083 (14)0.0501 (14)−0.0103 (10)
Geometric parameters (Å, º)
S1—C11.7418 (17)C9—H9B0.9700
S1—C191.8161 (19)C10—C121.517 (3)
N1—C11.370 (2)C10—C111.519 (3)
N1—C21.389 (2)C10—H10A0.9800
N1—C131.4450 (19)C11—H11A0.9700
N2—C11.302 (2)C11—H11B0.9700
N2—N31.395 (2)C12—H12A0.9700
N3—C21.302 (2)C12—H12B0.9700
O1A—C201.371 (3)C13—C141.374 (3)
O1A—C211.430 (3)C13—C181.379 (2)
O1B—C201.119 (9)C14—C151.394 (3)
O1B—C211.524 (11)C14—H14A0.9300
C2—C31.507 (2)C15—C161.371 (4)
C3—C41.537 (2)C15—H15A0.9300
C3—C81.538 (2)C16—C171.359 (4)
C3—C91.538 (2)C16—H16A0.9300
C4—C51.534 (3)C17—C181.384 (3)
C4—H4A0.9700C17—H17A0.9300
C4—H4B0.9700C18—H18A0.9300
C5—C121.520 (3)C19—C201.491 (3)
C5—C61.530 (3)C19—H19A0.9700
C5—H5A0.9800C19—H19B0.9700
C6—C71.522 (3)C20—H20A0.9700
C6—H6A0.9700C20—H20B0.9700
C6—H6B0.9700C20—H20C0.9601
C7—C111.518 (3)C20—H20D0.9599
C7—C81.536 (2)C21—H21A0.9599
C7—H7A0.9800C21—H21B0.9600
C8—H8A0.9700C21—H21C0.9600
C8—H8B0.9700C21—H21D0.9600
C9—C101.534 (3)C21—H21E0.9598
C9—H9A0.9700C21—H21F0.9600
C1—S1—C1998.08 (9)C10—C12—H12B109.9
C1—N1—C2104.57 (13)C5—C12—H12B109.9
C1—N1—C13125.03 (13)H12A—C12—H12B108.3
C2—N1—C13130.39 (13)C14—C13—C18120.99 (16)
C1—N2—N3106.50 (13)C14—C13—N1119.80 (15)
C2—N3—N2108.70 (13)C18—C13—N1119.21 (15)
C20—O1A—C21111.5 (2)C13—C14—C15118.7 (2)
C21—O1A—H20C105.5C13—C14—H14A120.7
C20—O1A—H21E146.8C15—C14—H14A120.7
H20C—O1A—H21E117.0C16—C15—C14120.5 (2)
C20—O1B—C21121.6 (9)C16—C15—H15A119.7
C20—O1B—H21B152.8C14—C15—H15A119.7
N2—C1—N1111.12 (14)C17—C16—C15120.0 (2)
N2—C1—S1126.93 (13)C17—C16—H16A120.0
N1—C1—S1121.95 (12)C15—C16—H16A120.0
N3—C2—N1109.10 (14)C16—C17—C18120.8 (2)
N3—C2—C3123.72 (14)C16—C17—H17A119.6
N1—C2—C3127.16 (14)C18—C17—H17A119.6
C2—C3—C4108.26 (13)C13—C18—C17119.01 (19)
C2—C3—C8111.61 (13)C13—C18—H18A120.5
C4—C3—C8108.03 (14)C17—C18—H18A120.5
C2—C3—C9111.62 (13)C20—C19—S1110.44 (15)
C4—C3—C9108.59 (15)C20—C19—H19A109.6
C8—C3—C9108.64 (14)S1—C19—H19A109.6
C5—C4—C3110.57 (15)C20—C19—H19B109.6
C5—C4—H4A109.5S1—C19—H19B109.6
C3—C4—H4A109.5H19A—C19—H19B108.1
C5—C4—H4B109.5O1B—C20—O1A52.9 (7)
C3—C4—H4B109.5O1B—C20—C19136.8 (6)
H4A—C4—H4B108.1O1A—C20—C19112.00 (19)
C12—C5—C6110.26 (19)O1B—C20—H20A114.0
C12—C5—C4109.43 (18)O1A—C20—H20A109.2
C6—C5—C4109.17 (17)C19—C20—H20A109.2
C12—C5—H5A109.3O1B—C20—H20B57.4
C6—C5—H5A109.3O1A—C20—H20B109.2
C4—C5—H5A109.3C19—C20—H20B109.2
C7—C6—C5108.95 (15)H20A—C20—H20B107.9
C7—C6—H6A109.9O1B—C20—H20C103.5
C5—C6—H6A109.9O1A—C20—H20C64.8
C7—C6—H6B109.9C19—C20—H20C102.9
C5—C6—H6B109.9H20A—C20—H20C51.4
H6A—C6—H6B108.3H20B—C20—H20C146.7
C11—C7—C6109.37 (16)O1B—C20—H20D103.0
C11—C7—C8109.30 (15)O1A—C20—H20D145.4
C6—C7—C8109.82 (15)C19—C20—H20D102.4
C11—C7—H7A109.4H20A—C20—H20D53.6
C6—C7—H7A109.4H20B—C20—H20D60.0
C8—C7—H7A109.4H20C—C20—H20D105.0
C7—C8—C3110.23 (13)O1A—C21—H21A109.3
C7—C8—H8A109.6O1B—C21—H21A141.5
C3—C8—H8A109.6O1A—C21—H21B109.6
C7—C8—H8B109.6O1B—C21—H21B68.7
C3—C8—H8B109.6H21A—C21—H21B109.5
H8A—C8—H8B108.1O1A—C21—H21C109.6
C10—C9—C3109.92 (15)O1B—C21—H21C106.9
C10—C9—H9A109.7H21A—C21—H21C109.5
C3—C9—H9A109.7H21B—C21—H21C109.5
C10—C9—H9B109.7O1A—C21—H21D132.2
C3—C9—H9B109.7O1B—C21—H21D109.1
H9A—C9—H9B108.2H21A—C21—H21D64.1
C12—C10—C11109.68 (18)H21B—C21—H21D46.1
C12—C10—C9109.98 (19)H21C—C21—H21D117.2
C11—C10—C9109.32 (15)O1A—C21—H21E65.1
C12—C10—H10A109.3O1B—C21—H21E109.0
C11—C10—H10A109.3H21A—C21—H21E49.2
C9—C10—H10A109.3H21B—C21—H21E144.7
C7—C11—C10110.02 (16)H21C—C21—H21E104.8
C7—C11—H11A109.7H21D—C21—H21E109.5
C10—C11—H11A109.7O1A—C21—H21F117.1
C7—C11—H11B109.7O1B—C21—H21F110.3
C10—C11—H11B109.7H21A—C21—H21F107.4
H11A—C11—H11B108.2H21B—C21—H21F103.8
C10—C12—C5109.14 (16)H21D—C21—H21F109.5
C10—C12—H12A109.9H21E—C21—H21F109.5
C5—C12—H12A109.9
C1—N2—N3—C2−0.2 (2)C2—C3—C9—C10−177.38 (15)
N3—N2—C1—N10.5 (2)C4—C3—C9—C10−58.1 (2)
N3—N2—C1—S1179.88 (13)C8—C3—C9—C1059.14 (19)
C2—N1—C1—N2−0.63 (18)C3—C9—C10—C1260.3 (2)
C13—N1—C1—N2178.41 (15)C3—C9—C10—C11−60.2 (2)
C2—N1—C1—S1179.98 (12)C6—C7—C11—C1060.1 (2)
C13—N1—C1—S1−1.0 (2)C8—C7—C11—C10−60.1 (2)
C19—S1—C1—N20.81 (19)C12—C10—C11—C7−60.1 (2)
C19—S1—C1—N1−179.90 (14)C9—C10—C11—C760.6 (2)
N2—N3—C2—N1−0.18 (19)C11—C10—C12—C559.3 (2)
N2—N3—C2—C3178.35 (15)C9—C10—C12—C5−60.9 (2)
C1—N1—C2—N30.48 (17)C6—C5—C12—C10−59.7 (2)
C13—N1—C2—N3−178.49 (16)C4—C5—C12—C1060.4 (2)
C1—N1—C2—C3−177.99 (15)C1—N1—C13—C14−95.7 (2)
C13—N1—C2—C33.0 (3)C2—N1—C13—C1483.1 (2)
N3—C2—C3—C4−7.1 (2)C1—N1—C13—C1883.7 (2)
N1—C2—C3—C4171.18 (16)C2—N1—C13—C18−97.5 (2)
N3—C2—C3—C8−125.84 (17)C18—C13—C14—C152.3 (3)
N1—C2—C3—C852.4 (2)N1—C13—C14—C15−178.32 (18)
N3—C2—C3—C9112.38 (18)C13—C14—C15—C16−0.3 (3)
N1—C2—C3—C9−69.4 (2)C14—C15—C16—C17−1.4 (4)
C2—C3—C4—C5179.69 (16)C15—C16—C17—C181.1 (3)
C8—C3—C4—C5−59.3 (2)C14—C13—C18—C17−2.6 (3)
C9—C3—C4—C558.3 (2)N1—C13—C18—C17178.02 (15)
C3—C4—C5—C12−60.0 (2)C16—C17—C18—C130.9 (3)
C3—C4—C5—C660.8 (2)C1—S1—C19—C20179.61 (15)
C12—C5—C6—C759.8 (2)C21—O1B—C20—O1A44.6 (9)
C4—C5—C6—C7−60.4 (2)C21—O1B—C20—C19127.7 (7)
C5—C6—C7—C11−59.5 (2)C21—O1A—C20—O1B−43.2 (7)
C5—C6—C7—C860.5 (2)C21—O1A—C20—C19−176.1 (2)
C11—C7—C8—C359.56 (19)S1—C19—C20—O1B8.4 (12)
C6—C7—C8—C3−60.43 (19)S1—C19—C20—O1A67.0 (2)
C2—C3—C8—C7177.63 (14)C20—O1A—C21—O1B34.6 (6)
C4—C3—C8—C758.74 (19)C20—O1B—C21—O1A−49.5 (9)
C9—C3—C8—C7−58.88 (18)
ReferencesAl-Abdullah, E. S., Asiri, H. H., El-Emam, A. A. & Ng, S. W. (2012). Acta Cryst. E68, o531.Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.El-Emam, A. A., Lahsasni, S., Asiri, H. H., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o1356.Fun, H.-K., Asik, S. I. J., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o3422–o3423.Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem 45, 5006–5011.Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.Spek, A. L. (2009). Acta Cryst D65, 148–155.Wang, W., Liu, Q., Xu, C., Wu, W. & Gao, Y. (2011). Acta Cryst. E67, o2236.