# Importing Streamlit for building the web-based interactive application framework import streamlit as st # Function to Display Model Performance def display_numerical_model_performance(): # HTML content html_content = """
This table presents the performance of various regression models for different companies. We have utilized an ensemble model approach to enhance prediction accuracy.
Company | Linear Regression | Ridge Regression | Lasso Regression | Elastic Net Regression |
---|---|---|---|---|
Apple (AAPL) | 0.9998629224782566 | 0.9998630076573156 | 0.9993577928176817 | 0.9996487306800625 |
Amazon (AMZN) | 0.999084553005321 | 0.9961820949085249 | 0.9961820949085249 | 0.9965084504390407 |
Google (GOOG) | 0.9992315300913325 | 0.9992317269769614 | 0.9973035403402394 | 0.9973876081990091 |
Microsoft (MSFT) | 0.9992315300913325 | 0.9998440164467663 | 0.9993642265769165 | 0.9994838523467628 |
Meta (META) | 0.9992315300913325 | 0.9992317269769614 | 0.9973035403402394 | 0.9973876081990091 |
Netflix (NFLX) | 0.9992198305734726 | 0.9992198288782033 | 0.9971600744221598 | 0.9971700356054888 |
NVIDIA (NVDA) | 0.9971063606802831 | 0.998365397592374 | 0.9940339650281499 | 0.9972701576306695 |
Tata Consultancy Services (TCS) | 0.9979612118835919 | 0.9979612934362246 | 0.9890586523727406 | 0.9891227853737217 |