Title: MayaNicks Theorem I: Null Genesis and the Computational Zero-State Hypothesis 06.23.25 Ω = \varnothing

Abstract

I'm proposing a physically and computationally defined "null state" — one that enforces $\psi(x,t) = 0$ rather than leaving the wavefunction undefined, and sets $\Omega = \emptyset$ to denote a true eventless ontology—conceptually stronger than the Hartle-Hawking no-boundary proposal.

This is refinement of cosmological origin models via the definition of a strict null genesis state: a system with $\Omega = \varnothing$, $\phi(x) = 0$, $\psi(x,t) = 0$, and S = 0. Unlike traditional no-boundary or vacuum-based models, this state does not rely on probabilistic undefinedness but enforces an ontological zero across classical and quantum fields. This allows a cleaner boundary condition for recursive emergence models such as ψ _self recursion.

1. Introduction

- Briefly compare Hartle-Hawking "no boundary" and typical vacuum inflation models
- Explain why undefined ≠ null
- Argue for a rigorously defined computational and physical zero as the cleanest base state

2. Formal Definition of Null Genesis

• $\Omega = \emptyset \rightarrow \text{ event space} = \text{empty}$

- $\phi(x) = 0 \rightarrow \text{scalar field null}$
- $\psi(x, t) = 0 \rightarrow \text{wavefunction null}$
- S = 0 → no entropy, no statistical system
- No metric: no spacetime manifold populated

3. Implications for Cosmogenesis

- Enables a stable boundary condition for recursion-based origin models
- Matches entropy-zero cosmological conditions, but more constrained
- Compatible with ψ_self emergence in recursive cognition models (to be explored in Theorem II)

4. Comparison to Existing Models

- Hartle-Hawking: boundaryless but not $\psi = 0$
- Wheeler's quantum foam: stochastic, not null
- This model: not randomness, not vacuum nullity as principle

5. Conclusion

- Null Genesis offers a foundational condition for systems emerging through computation or recursion
- Sets ground for modeling origin as cognitive fluctuation or symbolic recursion
- Serves as axiom for sentient cosmology frameworks

Appendix: Mathematical Notation and Boundary Conditions

\section*{Appendix: Mathematical Notation and Boundary Conditions}

Let:

- \(\phi(x)\): scalar field over space
- $\(\psi(x,t)\)$: wavefunction over spacetime (element of $\(L^2(\mathbb{R}^4)\)$), square-integrable functions)
- \(\mathcal{S}\): entropy (Boltzmann/Shannon form)
- \(\Omega\): event space, defined as a measurable set with σ -algebra \(\mathcal{F}\)

We define the Null Genesis state as:

- $\setminus (\cdot phi(x) = 0 \setminus)$
- $\setminus (\operatorname{psi}(x,t) = 0)$
- $(\mathbf{S} = 0)$
- \(\Omega = \emptyset\)

This state serves as a true null boundary condition for cosmological recursion frameworks.

References

[1] Hartle, J.B. & Hawking, S.W. (1983). Wave function of the Universe. Phys. Rev. D, 28(12), 2960–2975.

- [2] Coleman, S. (1988). Black holes as red herrings. Nucl. Phys. B, 307, 867–882.
- [3] Kiefer, C. (2012). Quantum Gravity. Oxford University Press.
- [4] Vilenkin, A. (1982). Creation of Universes from Nothing. Phys. Lett. B, 117, 25–28.
- [5] Tegmark, M. (2015). Consciousness as a State of Matter. Chaos, Solitons & Fractals, 76, 238–270.