# INV SHARED EXPERIMENT # ~/code/watch/scripts/generate_ta2_features.sh DVC_DPATH=$HOME/data/dvc-repos/smart_watch_dvc DVC_DPATH=${DVC_DPATH:-$HOME/data/dvc-repos/smart_watch_dvc} WORKDIR=$DVC_DPATH/training/$HOSTNAME/$USER DATASET_CODE=Drop1_October2021 ARCH=smt_it_joint_p8 EXPERIMENT_NAME=Saliency_${ARCH}_uky_dzyne_uconn_s2only_v003 KWCOCO_BUNDLE_DPATH=${KWCOCO_BUNDLE_DPATH:-$DVC_DPATH/drop1-S2-L8-aligned} kwcoco subset --src $KWCOCO_BUNDLE_DPATH/combo_train_data.kwcoco.json \ --dst $KWCOCO_BUNDLE_DPATH/combo_train_s2_data.kwcoco.json \ --select_images '.sensor_coarse == "S2"' kwcoco subset --src $KWCOCO_BUNDLE_DPATH/combo_vali_data.kwcoco.json \ --dst $KWCOCO_BUNDLE_DPATH/combo_vali_s2_data.kwcoco.json \ --select_images '.sensor_coarse == "S2"' TRAIN_FPATH=$KWCOCO_BUNDLE_DPATH/combo_train_s2_data.kwcoco.json VALI_FPATH=$KWCOCO_BUNDLE_DPATH/combo_vali_s2_data.kwcoco.json TEST_FPATH=$KWCOCO_BUNDLE_DPATH/combo_vali_s2_data.kwcoco.json python -m geowatch stats $TRAIN_FPATH #CHANNELS="blue|green|red|ASI|inv_shared.0:64" TODO UKY_SHOW_FEATS="inv_sort1|inv_augment1|inv_shared1" UKY_OTHER_FEATS="inv_sort2|inv_augment2|inv_sort3|inv_augment3|inv_shared2|inv_shared3|inv_shared4|inv_shared5|inv_shared6|inv_shared7|inv_shared8" DZYNE_SHOW_FEATS="grassland|med_low_density_built_up|bare_ground|inland_water" DZYNE_OTHER_FEATS="forest_evergreen|brush|forest_deciduous|built_up|cropland|rice_field|marsh|snow_or_ice_field|sand_dune|sebkha|beach|alluvial_deposits" CHANNELS="blue|green|red|${DZYNE_SHOW_FEATS}|${UKY_SHOW_FEATS}|${DZYNE_OTHER_FEATS}|${UKY_OTHER_FEATS}|nir|swir16|swir22" #CHANNELS="blue|green|red|ASI|${DZYNE_SHOW_FEATS}|${UKY_SHOW_FEATS}|${DZYNE_OTHER_FEATS}|${UKY_OTHER_FEATS}|nir|swir16|swir22|" DEFAULT_ROOT_DIR=$WORKDIR/$DATASET_CODE/runs/$EXPERIMENT_NAME PACKAGE_FPATH=$DEFAULT_ROOT_DIR/final_package_$EXPERIMENT_NAME.pt #TRAIN_CONFIG_FPATH=$WORKDIR/$DATASET_CODE/configs/train_$EXPERIMENT_NAME.yml #PRED_CONFIG_FPATH=$WORKDIR/$DATASET_CODE/configs/predict_$EXPERIMENT_NAME.yml #PRED_FPATH=$DEFAULT_ROOT_DIR/pred/pred.kwcoco.json #SUGGESTIONS="$(python -m geowatch.tasks.fusion.organize suggest_paths \ # --package_fpath=$PACKAGE_FPATH \ # --test_dataset=$TEST_DATASET)" #PRED_DATASET="$(echo "$SUGGESTIONS" | jq -r .pred_dataset)" #EVAL_DATASET="$(echo "$SUGGESTIONS" | jq -r .eval_dpath)" # Write train and prediction configs export CUDA_VISIBLE_DEVICES="0" python -m geowatch.tasks.fusion.fit \ --channels=${CHANNELS} \ --name=$EXPERIMENT_NAME \ --method="MultimodalTransformer" \ --arch_name=$ARCH \ --chip_size=32 \ --chip_overlap=0.0 \ --time_steps=11 \ --time_span=3y \ --time_sampling=hard+distribute \ --batch_size=4 \ --accumulate_grad_batches=8 \ --num_workers=32 \ --attention_impl=performer \ --neg_to_pos_ratio=1.0 \ --global_class_weight=1.0 \ --global_change_weight=1.0 \ --global_saliency_weight=1.0 \ --negative_change_weight=0.05 \ --change_loss='dicefocal' \ --saliency_loss='focal' \ --class_loss='cce' \ --normalize_inputs=256 \ --diff_inputs=False \ --max_epochs=100 \ --patience=100 \ --gpus=1 \ --learning_rate=1e-3 \ --weight_decay=1e-5 \ --num_draw=8 \ --init="/home/joncrall/data/dvc-repos/smart_watch_dvc/training/toothbrush/joncrall/Drop1_October2021/runs/Saliency_smt_it_joint_p8_uky_dzyne_uconn_s2only_v002/lightning_logs/version_8/checkpoints/epoch=21-step=16191.ckpt" \ --dropout=0.1 \ --window_size=8 \ --default_root_dir=$DEFAULT_ROOT_DIR \ --package_fpath=$PACKAGE_FPATH \ --train_dataset=$TRAIN_FPATH \ --vali_dataset=$VALI_FPATH \ --test_dataset=$TEST_FPATH \ --num_sanity_val_steps=0 #--torch_sharing_strategy=file_system \ #--torch_start_method=fork \