.. _how-to-partition: ================================================= How to create arrays with regularly-spaced values ================================================= There are a few NumPy functions that are similar in application, but which provide slightly different results, which may cause confusion if one is not sure when and how to use them. The following guide aims to list these functions and describe their recommended usage. The functions mentioned here are * `numpy.linspace` * `numpy.arange` * `numpy.geomspace` * `numpy.logspace` * `numpy.meshgrid` * `numpy.mgrid` * `numpy.ogrid` 1D domains (intervals) ====================== ``linspace`` vs. ``arange`` --------------------------- Both `numpy.linspace` and `numpy.arange` provide ways to partition an interval (a 1D domain) into equal-length subintervals. These partitions will vary depending on the chosen starting and ending points, and the **step** (the length of the subintervals). * **Use** `numpy.arange` **if you want integer steps.** `numpy.arange` relies on step size to determine how many elements are in the returned array, which excludes the endpoint. This is determined through the ``step`` argument to ``arange``. Example:: >>> np.arange(0, 10, 2) # np.arange(start, stop, step) array([0, 2, 4, 6, 8]) The arguments ``start`` and ``stop`` should be integer or real, but not complex numbers. `numpy.arange` is similar to the Python built-in :py:class:`range`. Floating-point inaccuracies can make ``arange`` results with floating-point numbers confusing. In this case, you should use `numpy.linspace` instead. * **Use** `numpy.linspace` **if you want the endpoint to be included in the result, or if you are using a non-integer step size.** `numpy.linspace` *can* include the endpoint and determines step size from the `num` argument, which specifies the number of elements in the returned array. The inclusion of the endpoint is determined by an optional boolean argument ``endpoint``, which defaults to ``True``. Note that selecting ``endpoint=False`` will change the step size computation, and the subsequent output for the function. Example:: >>> np.linspace(0.1, 0.2, num=5) # np.linspace(start, stop, num) array([0.1 , 0.125, 0.15 , 0.175, 0.2 ]) >>> np.linspace(0.1, 0.2, num=5, endpoint=False) array([0.1, 0.12, 0.14, 0.16, 0.18]) `numpy.linspace` can also be used with complex arguments:: >>> np.linspace(1+1.j, 4, 5, dtype=np.complex64) array([1. +1.j , 1.75+0.75j, 2.5 +0.5j , 3.25+0.25j, 4. +0.j ], dtype=complex64) Other examples -------------- 1. Unexpected results may happen if floating point values are used as ``step`` in ``numpy.arange``. To avoid this, make sure all floating point conversion happens after the computation of results. For example, replace :: >>> list(np.arange(0.1,0.4,0.1).round(1)) [0.1, 0.2, 0.3, 0.4] # endpoint should not be included! with :: >>> list(np.arange(1, 4, 1) / 10.0) [0.1, 0.2, 0.3] # expected result 2. Note that :: >>> np.arange(0, 1.12, 0.04) array([0. , 0.04, 0.08, 0.12, 0.16, 0.2 , 0.24, 0.28, 0.32, 0.36, 0.4 , 0.44, 0.48, 0.52, 0.56, 0.6 , 0.64, 0.68, 0.72, 0.76, 0.8 , 0.84, 0.88, 0.92, 0.96, 1. , 1.04, 1.08, 1.12]) and :: >>> np.arange(0, 1.08, 0.04) array([0. , 0.04, 0.08, 0.12, 0.16, 0.2 , 0.24, 0.28, 0.32, 0.36, 0.4 , 0.44, 0.48, 0.52, 0.56, 0.6 , 0.64, 0.68, 0.72, 0.76, 0.8 , 0.84, 0.88, 0.92, 0.96, 1. , 1.04]) These differ because of numeric noise. When using floating point values, it is possible that ``0 + 0.04 * 28 < 1.12``, and so ``1.12`` is in the interval. In fact, this is exactly the case:: >>> 1.12/0.04 28.000000000000004 But ``0 + 0.04 * 27 >= 1.08`` so that 1.08 is excluded:: >>> 1.08/0.04 27.0 Alternatively, you could use ``np.arange(0, 28)*0.04`` which would always give you precise control of the end point since it is integral:: >>> np.arange(0, 28)*0.04 array([0. , 0.04, 0.08, 0.12, 0.16, 0.2 , 0.24, 0.28, 0.32, 0.36, 0.4 , 0.44, 0.48, 0.52, 0.56, 0.6 , 0.64, 0.68, 0.72, 0.76, 0.8 , 0.84, 0.88, 0.92, 0.96, 1. , 1.04, 1.08]) ``geomspace`` and ``logspace`` ------------------------------ ``numpy.geomspace`` is similar to ``numpy.linspace``, but with numbers spaced evenly on a log scale (a geometric progression). The endpoint is included in the result. Example:: >>> np.geomspace(2, 3, num=5) array([2. , 2.21336384, 2.44948974, 2.71080601, 3. ]) ``numpy.logspace`` is similar to ``numpy.geomspace``, but with the start and end points specified as logarithms (with base 10 as default):: >>> np.logspace(2, 3, num=5) array([ 100. , 177.827941 , 316.22776602, 562.34132519, 1000. ]) In linear space, the sequence starts at ``base ** start`` (``base`` to the power of ``start``) and ends with ``base ** stop``:: >>> np.logspace(2, 3, num=5, base=2) array([4. , 4.75682846, 5.65685425, 6.72717132, 8. ]) N-D domains =========== N-D domains can be partitioned into *grids*. This can be done using one of the following functions. ``meshgrid`` ------------ The purpose of ``numpy.meshgrid`` is to create a rectangular grid out of a set of one-dimensional coordinate arrays. Given arrays:: >>> x = np.array([0, 1, 2, 3]) >>> y = np.array([0, 1, 2, 3, 4, 5]) ``meshgrid`` will create two coordinate arrays, which can be used to generate the coordinate pairs determining this grid.:: >>> xx, yy = np.meshgrid(x, y) >>> xx array([[0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3]]) >>> yy array([[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4], [5, 5, 5, 5]]) >>> import matplotlib.pyplot as plt >>> plt.plot(xx, yy, marker='.', color='k', linestyle='none') .. plot:: user/plots/meshgrid_plot.py :align: center :include-source: 0 ``mgrid`` --------- ``numpy.mgrid`` can be used as a shortcut for creating meshgrids. It is not a function, but when indexed, returns a multidimensional meshgrid. :: >>> xx, yy = np.meshgrid(np.array([0, 1, 2, 3]), np.array([0, 1, 2, 3, 4, 5])) >>> xx.T, yy.T (array([[0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]]), array([[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]])) >>> np.mgrid[0:4, 0:6] array([[[0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]], [[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]]]) ``ogrid`` --------- Similar to ``numpy.mgrid``, ``numpy.ogrid`` returns an *open* multidimensional meshgrid. This means that when it is indexed, only one dimension of each returned array is greater than 1. This avoids repeating the data and thus saves memory, which is often desirable. These sparse coordinate grids are intended to be used with :ref:`broadcasting`. When all coordinates are used in an expression, broadcasting still leads to a fully-dimensional result array. :: >>> np.ogrid[0:4, 0:6] (array([[0], [1], [2], [3]]), array([[0, 1, 2, 3, 4, 5]])) All three methods described here can be used to evaluate function values on a grid. :: >>> g = np.ogrid[0:4, 0:6] >>> zg = np.sqrt(g[0]**2 + g[1]**2) >>> g[0].shape, g[1].shape, zg.shape ((4, 1), (1, 6), (4, 6)) >>> m = np.mgrid[0:4, 0:6] >>> zm = np.sqrt(m[0]**2 + m[1]**2) >>> np.array_equal(zm, zg) True