//! Identifier types for transactions and senders. use reth_primitives::Address; use rustc_hash::FxHashMap; use std::collections::HashMap; /// An internal mapping of addresses. /// /// This assigns a _unique_ [`SenderId`] for a new [`Address`]. /// It has capacity for 2^64 unique addresses. #[derive(Debug, Default)] pub struct SenderIdentifiers { /// The identifier to use next. id: u64, /// Assigned [`SenderId`] for an [`Address`]. address_to_id: HashMap, /// Reverse mapping of [`SenderId`] to [`Address`]. sender_to_address: FxHashMap, } impl SenderIdentifiers { /// Returns the address for the given identifier. #[allow(dead_code)] pub fn address(&self, id: &SenderId) -> Option<&Address> { self.sender_to_address.get(id) } /// Returns the [`SenderId`] that belongs to the given address, if it exists pub fn sender_id(&self, addr: &Address) -> Option { self.address_to_id.get(addr).copied() } /// Returns the existing [`SenderId`] or assigns a new one if it's missing pub fn sender_id_or_create(&mut self, addr: Address) -> SenderId { self.sender_id(&addr).unwrap_or_else(|| { let id = self.next_id(); self.address_to_id.insert(addr, id); self.sender_to_address.insert(id, addr); id }) } /// Returns the current identifier and increments the counter. fn next_id(&mut self) -> SenderId { let id = self.id; self.id = self.id.wrapping_add(1); id.into() } } /// A _unique_ identifier for a sender of an address. /// /// This is the identifier of an internal `address` mapping that is valid in the context of this /// program. #[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)] pub struct SenderId(u64); impl SenderId { /// Returns a `Bound` for [`TransactionId`] starting with nonce `0` pub const fn start_bound(self) -> std::ops::Bound { std::ops::Bound::Included(TransactionId::new(self, 0)) } } impl From for SenderId { fn from(value: u64) -> Self { Self(value) } } /// A unique identifier of a transaction of a Sender. /// /// This serves as an identifier for dependencies of a transaction: /// A transaction with a nonce higher than the current state nonce depends on `tx.nonce - 1`. #[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)] pub struct TransactionId { /// Sender of this transaction pub sender: SenderId, /// Nonce of this transaction pub nonce: u64, } impl TransactionId { /// Create a new identifier pair pub const fn new(sender: SenderId, nonce: u64) -> Self { Self { sender, nonce } } /// Returns the [`TransactionId`] this transaction depends on. /// /// This returns `transaction_nonce - 1` if `transaction_nonce` is higher than the /// `on_chain_nonce` pub fn ancestor(transaction_nonce: u64, on_chain_nonce: u64, sender: SenderId) -> Option { (transaction_nonce > on_chain_nonce) .then(|| Self::new(sender, transaction_nonce.saturating_sub(1))) } /// Returns the [`TransactionId`] that would come before this transaction. pub fn unchecked_ancestor(&self) -> Option { (self.nonce != 0).then(|| Self::new(self.sender, self.nonce - 1)) } /// Returns the [`TransactionId`] that directly follows this transaction: `self.nonce + 1` pub const fn descendant(&self) -> Self { Self::new(self.sender, self.next_nonce()) } /// Returns the nonce that follows immediately after this one. #[inline] pub const fn next_nonce(&self) -> u64 { self.nonce + 1 } } #[cfg(test)] mod tests { use super::*; use std::collections::BTreeSet; #[test] fn test_transaction_id_new() { let sender = SenderId(1); let tx_id = TransactionId::new(sender, 5); assert_eq!(tx_id.sender, sender); assert_eq!(tx_id.nonce, 5); } #[test] fn test_transaction_id_ancestor() { let sender = SenderId(1); // Special case with nonce 0 and higher on-chain nonce let tx_id = TransactionId::ancestor(0, 1, sender); assert_eq!(tx_id, None); // Special case with nonce 0 and same on-chain nonce let tx_id = TransactionId::ancestor(0, 0, sender); assert_eq!(tx_id, None); // Ancestor is the previous nonce if the transaction nonce is higher than the on-chain nonce let tx_id = TransactionId::ancestor(5, 0, sender); assert_eq!(tx_id, Some(TransactionId::new(sender, 4))); // No ancestor if the transaction nonce is the same as the on-chain nonce let tx_id = TransactionId::ancestor(5, 5, sender); assert_eq!(tx_id, None); // No ancestor if the transaction nonce is lower than the on-chain nonce let tx_id = TransactionId::ancestor(5, 15, sender); assert_eq!(tx_id, None); } #[test] fn test_transaction_id_unchecked_ancestor() { let sender = SenderId(1); // Ancestor is the previous nonce if transaction nonce is higher than 0 let tx_id = TransactionId::new(sender, 5); assert_eq!(tx_id.unchecked_ancestor(), Some(TransactionId::new(sender, 4))); // No ancestor if transaction nonce is 0 let tx_id = TransactionId::new(sender, 0); assert_eq!(tx_id.unchecked_ancestor(), None); } #[test] fn test_transaction_id_descendant() { let sender = SenderId(1); let tx_id = TransactionId::new(sender, 5); let descendant = tx_id.descendant(); assert_eq!(descendant, TransactionId::new(sender, 6)); } #[test] fn test_transaction_id_next_nonce() { let sender = SenderId(1); let tx_id = TransactionId::new(sender, 5); assert_eq!(tx_id.next_nonce(), 6); } #[test] fn test_transaction_id_ord_eq_sender() { let tx1 = TransactionId::new(100u64.into(), 0u64); let tx2 = TransactionId::new(100u64.into(), 1u64); assert!(tx2 > tx1); let set = BTreeSet::from([tx1, tx2]); assert_eq!(set.into_iter().collect::>(), vec![tx1, tx2]); } #[test] fn test_transaction_id_ord() { let tx1 = TransactionId::new(99u64.into(), 0u64); let tx2 = TransactionId::new(100u64.into(), 1u64); assert!(tx2 > tx1); let set = BTreeSet::from([tx1, tx2]); assert_eq!(set.into_iter().collect::>(), vec![tx1, tx2]); } #[test] fn test_address_retrieval() { let mut identifiers = SenderIdentifiers::default(); let address = Address::new([1; 20]); let id = identifiers.sender_id_or_create(address); assert_eq!(identifiers.address(&id), Some(&address)); } #[test] fn test_sender_id_retrieval() { let mut identifiers = SenderIdentifiers::default(); let address = Address::new([1; 20]); let id = identifiers.sender_id_or_create(address); assert_eq!(identifiers.sender_id(&address), Some(id)); } #[test] fn test_sender_id_or_create_existing() { let mut identifiers = SenderIdentifiers::default(); let address = Address::new([1; 20]); let id1 = identifiers.sender_id_or_create(address); let id2 = identifiers.sender_id_or_create(address); assert_eq!(id1, id2); } #[test] fn test_sender_id_or_create_new() { let mut identifiers = SenderIdentifiers::default(); let address1 = Address::new([1; 20]); let address2 = Address::new([2; 20]); let id1 = identifiers.sender_id_or_create(address1); let id2 = identifiers.sender_id_or_create(address2); assert_ne!(id1, id2); } #[test] fn test_next_id_wrapping() { let mut identifiers = SenderIdentifiers { id: u64::MAX, ..Default::default() }; // The current ID is `u64::MAX`, the next ID should wrap around to 0. let id1 = identifiers.next_id(); assert_eq!(id1, SenderId(u64::MAX)); // The next ID should now be 0 because of wrapping. let id2 = identifiers.next_id(); assert_eq!(id2, SenderId(0)); // And then 1, continuing incrementing. let id3 = identifiers.next_id(); assert_eq!(id3, SenderId(1)); } #[test] fn test_sender_id_start_bound() { let sender = SenderId(1); let start_bound = sender.start_bound(); if let std::ops::Bound::Included(tx_id) = start_bound { assert_eq!(tx_id, TransactionId::new(sender, 0)); } else { panic!("Expected included bound"); } } }