#!/usr/bin/env python3 """ UBP Mathematical Framework Implementation Core computational components for Universal Binary Principle This module implements the fundamental mathematical structures and operations defined in the UBP framework, providing the computational foundation for Millennium Prize Problem solutions. """ import numpy as np import scipy.sparse as sp from typing import Tuple, List, Dict, Optional, Union from dataclasses import dataclass from enum import Enum import math class ToggleOperation(Enum): """Enumeration of toggle algebra operations""" AND = "and" XOR = "xor" OR = "or" RESONANCE = "resonance" ENTANGLEMENT = "entanglement" SUPERPOSITION = "superposition" class BitfieldLayer(Enum): """OffBit Ontology layers""" REALITY = (0, 5) # bits 0-5: physical phenomena INFORMATION = (6, 11) # bits 6-11: data processing ACTIVATION = (12, 17) # bits 12-17: energy states UNACTIVATED = (18, 23) # bits 18-23: potential states @dataclass class OffBit: """ Fundamental 24-bit unit of UBP reality model Attributes: bits: 24-bit binary vector representing the OffBit state position: 6D coordinates in the Bitfield layer_mask: Active layers for this OffBit """ bits: np.ndarray # shape (24,) dtype bool position: Tuple[int, int, int, int, int, int] layer_mask: int = 0b111111 # all layers active by default def __post_init__(self): if self.bits.shape != (24,): raise ValueError("OffBit must have exactly 24 bits") if not np.issubdtype(self.bits.dtype, np.bool_): self.bits = self.bits.astype(bool) def get_layer(self, layer: BitfieldLayer) -> np.ndarray: """Extract bits from specific layer""" start, end = layer.value return self.bits[start:end+1] def set_layer(self, layer: BitfieldLayer, values: np.ndarray): """Set bits in specific layer""" start, end = layer.value if values.shape != (end - start + 1,): raise ValueError(f"Layer {layer.name} requires {end-start+1} bits") self.bits[start:end+1] = values class ToggleAlgebra: """Implementation of UBP toggle algebra operations""" @staticmethod def and_op(b1: OffBit, b2: OffBit) -> OffBit: """AND operation: min(b1, b2) - crystalline structures""" result_bits = np.minimum(b1.bits, b2.bits) return OffBit(result_bits, b1.position) @staticmethod def xor_op(b1: OffBit, b2: OffBit) -> OffBit: """XOR operation: |b1 - b2| - neural networks""" result_bits = np.abs(b1.bits.astype(int) - b2.bits.astype(int)).astype(bool) return OffBit(result_bits, b1.position) @staticmethod def or_op(b1: OffBit, b2: OffBit) -> OffBit: """OR operation: max(b1, b2) - quantum superposition""" result_bits = np.maximum(b1.bits, b2.bits) return OffBit(result_bits, b1.position) @staticmethod def resonance_op(offbit: OffBit, frequency: float, distance: float = 0.0) -> OffBit: """ Resonance operation: b * f(d) where f(d) = exp(-k*d^2) Args: offbit: Input OffBit frequency: Resonance frequency in Hz distance: Spatial distance for decay calculation """ k = 0.0002 # spatial decay constant c = 1.0 # amplitude constant decay_factor = c * np.exp(-k * distance**2) frequency_factor = np.sin(2 * np.pi * frequency * distance) if distance > 0 else 1.0 # Apply resonance to each bit with frequency-dependent modulation result_bits = offbit.bits.copy() for i in range(24): if offbit.bits[i]: # Modulate based on bit position and frequency phase = 2 * np.pi * frequency * i / 24 modulation = (1 + np.cos(phase)) / 2 result_bits[i] = bool(modulation * decay_factor > 0.5) return OffBit(result_bits, offbit.position) @staticmethod def entanglement_op(b1: OffBit, b2: OffBit, coherence: float = 1.0) -> Tuple[OffBit, OffBit]: """ Entanglement operation: creates correlated OffBit pair Args: b1, b2: Input OffBits coherence: Coherence factor (0-1) """ # Create entangled state based on coherence correlation_mask = np.random.random(24) < coherence result1_bits = b1.bits.copy() result2_bits = b2.bits.copy() # Apply correlation where mask is True for i in range(24): if correlation_mask[i]: # Entangled bits have correlated values if np.random.random() < 0.5: result1_bits[i] = result2_bits[i] = True else: result1_bits[i] = result2_bits[i] = False return OffBit(result1_bits, b1.position), OffBit(result2_bits, b2.position) @staticmethod def superposition_op(offbits: List[OffBit], weights: List[float]) -> OffBit: """ Superposition operation: weighted combination of states Args: offbits: List of input OffBits weights: Corresponding weights (must sum to 1) """ if len(offbits) != len(weights): raise ValueError("Number of OffBits must match number of weights") if abs(sum(weights) - 1.0) > 1e-10: raise ValueError("Weights must sum to 1.0") # Compute weighted average for each bit position result_bits = np.zeros(24, dtype=float) for offbit, weight in zip(offbits, weights): result_bits += weight * offbit.bits.astype(float) # Convert to boolean based on threshold threshold = 0.5 return OffBit((result_bits > threshold).astype(bool), offbits[0].position) class GlobalCoherenceInvariant: """Implementation of P_GCI calculation""" def __init__(self, delta_t: float = 0.318309886): """ Initialize GCI with temporal parameter Args: delta_t: Temporal alignment parameter (default aligns with Pi resonance) """ self.delta_t = delta_t self.pi_resonance_freq = 3.14159 # Hz def calculate(self, frequencies: List[float]) -> float: """ Calculate Global Coherence Invariant Args: frequencies: List of active toggle frequencies Returns: P_GCI value """ if not frequencies: return 1.0 f_avg = np.mean(frequencies) return np.cos(2 * np.pi * f_avg * self.delta_t) class TGICStructure: """Triad Graph Interaction Constraint implementation""" def __init__(self): # Define the 9 pairwise interactions self.interactions = [ ('x', 'y'), ('y', 'x'), # x-y plane interactions ('x', 'z'), ('z', 'x'), # x-z plane interactions ('y', 'z'), ('z', 'y'), # y-z plane interactions ('x-y', 'z'), ('y-z', 'x'), ('z-x', 'y') # mixed interactions ] # Map interactions to toggle operations self.operation_map = { ('x', 'y'): ToggleOperation.RESONANCE, ('y', 'x'): ToggleOperation.RESONANCE, ('x', 'z'): ToggleOperation.ENTANGLEMENT, ('z', 'x'): ToggleOperation.ENTANGLEMENT, ('y', 'z'): ToggleOperation.SUPERPOSITION, ('z', 'y'): ToggleOperation.SUPERPOSITION, ('x-y', 'z'): ToggleOperation.AND, ('y-z', 'x'): ToggleOperation.XOR, ('z-x', 'y'): ToggleOperation.OR } # Interaction weights (must sum to 1) self.weights = {interaction: 1.0/9.0 for interaction in self.interactions} def get_operation(self, interaction: Tuple[str, str]) -> ToggleOperation: """Get toggle operation for given interaction""" return self.operation_map.get(interaction, ToggleOperation.AND) def get_weight(self, interaction: Tuple[str, str]) -> float: """Get weight for given interaction""" return self.weights.get(interaction, 0.0) class GLRErrorCorrection: """Golay-Leech-Resonance error correction system""" def __init__(self, max_neighbors: int = 20000): self.max_neighbors = max_neighbors self.golay_overhead = 0.91 # ~91% overhead for Golay (24,12) self.temporal_bins_8bit = 256 self.temporal_bins_16bit = 65536 # Target frequencies for correction self.target_frequencies = [ 3.14159, # Pi resonance 14.134725, # First Riemann zeta zero 21.022040, # Second Riemann zeta zero 36.339691, # Derived frequency 4.58e14 # Luminescence frequency ] def correct_frequency(self, measured_freq: float, weights: List[float]) -> float: """ GLR frequency correction algorithm Args: measured_freq: Measured frequency value weights: NRCI-based weights for each target frequency Returns: Corrected frequency """ if len(weights) != len(self.target_frequencies): weights = [1.0] * len(self.target_frequencies) # Find closest target frequency weighted by NRCI min_error = float('inf') corrected_freq = measured_freq for target_freq, weight in zip(self.target_frequencies, weights): weighted_error = weight * abs(measured_freq - target_freq) if weighted_error < min_error: min_error = weighted_error corrected_freq = target_freq return corrected_freq def correct_offbit(self, offbit: OffBit, neighbors: List[OffBit]) -> OffBit: """ Apply GLR error correction to an OffBit using neighbor information Args: offbit: OffBit to correct neighbors: Neighboring OffBits for spatial correction Returns: Error-corrected OffBit """ # Limit number of neighbors for computational efficiency if len(neighbors) > self.max_neighbors: neighbors = neighbors[:self.max_neighbors] corrected_bits = offbit.bits.copy() # Apply Golay-style error correction for bit_idx in range(24): # Count neighbor votes for this bit position neighbor_votes = sum(1 for neighbor in neighbors if neighbor.bits[bit_idx]) total_neighbors = len(neighbors) if total_neighbors > 0: # Majority voting with distance weighting vote_ratio = neighbor_votes / total_neighbors # Apply correction if strong consensus disagrees with current bit if vote_ratio > 0.7 and not offbit.bits[bit_idx]: corrected_bits[bit_idx] = True elif vote_ratio < 0.3 and offbit.bits[bit_idx]: corrected_bits[bit_idx] = False return OffBit(corrected_bits, offbit.position) class NonRandomCoherenceIndex: """NRCI calculation and monitoring""" def __init__(self, gci: GlobalCoherenceInvariant): self.gci = gci def calculate(self, toggle_operations: List[Tuple[OffBit, OffBit]], frequencies: List[float]) -> float: """ Calculate Non-Random Coherence Index Args: toggle_operations: List of (input, output) OffBit pairs frequencies: Active frequencies in the system Returns: NRCI value (0-1, target >0.999997) """ if not toggle_operations: return 1.0 p_gci = self.gci.calculate(frequencies) total_error = 0.0 for input_bit, output_bit in toggle_operations: # Calculate ideal output based on P_GCI ideal_output = self._calculate_ideal_output(input_bit, p_gci) # Calculate error between actual and ideal error = self._calculate_bit_error(output_bit, ideal_output) total_error += error # NRCI formula: 1 - (sum of errors) / (9 * N_toggles) n_toggles = len(toggle_operations) nrci = 1.0 - (total_error / (9.0 * n_toggles)) return max(0.0, min(1.0, nrci)) # Clamp to [0,1] def _calculate_ideal_output(self, input_bit: OffBit, p_gci: float) -> OffBit: """Calculate ideal OffBit output based on P_GCI""" # Simplified ideal calculation - in practice this would be more complex ideal_bits = input_bit.bits.copy() # Apply P_GCI modulation to each bit for i in range(24): if input_bit.bits[i]: # Modulate based on P_GCI and bit position modulation = (1 + p_gci * np.cos(2 * np.pi * i / 24)) / 2 ideal_bits[i] = modulation > 0.5 return OffBit(ideal_bits, input_bit.position) def _calculate_bit_error(self, actual: OffBit, ideal: OffBit) -> float: """Calculate error between actual and ideal OffBits""" # Hamming distance normalized by bit count differences = np.sum(actual.bits != ideal.bits) return differences / 24.0 class UBPBitfield: """Main Bitfield implementation for UBP computations""" def __init__(self, dimensions: Tuple[int, int, int, int, int, int] = (170, 170, 170, 5, 2, 2)): """ Initialize UBP Bitfield Args: dimensions: 6D dimensions of the Bitfield """ self.dimensions = dimensions self.total_cells = np.prod(dimensions) # Use sparse representation for memory efficiency self.offbits: Dict[Tuple[int, int, int, int, int, int], OffBit] = {} # Initialize core components self.toggle_algebra = ToggleAlgebra() self.gci = GlobalCoherenceInvariant() self.tgic = TGICStructure() self.glr = GLRErrorCorrection() self.nrci_calculator = NonRandomCoherenceIndex(self.gci) # Performance tracking self.active_frequencies: List[float] = [] self.toggle_history: List[Tuple[OffBit, OffBit]] = [] def set_offbit(self, position: Tuple[int, int, int, int, int, int], offbit: OffBit): """Set OffBit at specified position""" if not self._is_valid_position(position): raise ValueError(f"Invalid position {position} for dimensions {self.dimensions}") self.offbits[position] = offbit def get_offbit(self, position: Tuple[int, int, int, int, int, int]) -> Optional[OffBit]: """Get OffBit at specified position""" return self.offbits.get(position) def get_neighbors(self, position: Tuple[int, int, int, int, int, int], radius: int = 1) -> List[OffBit]: """Get neighboring OffBits within specified radius""" neighbors = [] x, y, z, l, m, n = position for dx in range(-radius, radius + 1): for dy in range(-radius, radius + 1): for dz in range(-radius, radius + 1): if dx == dy == dz == 0: continue neighbor_pos = (x + dx, y + dy, z + dz, l, m, n) if self._is_valid_position(neighbor_pos): neighbor = self.get_offbit(neighbor_pos) if neighbor is not None: neighbors.append(neighbor) return neighbors def apply_toggle_operation(self, op: ToggleOperation, offbit1: OffBit, offbit2: Optional[OffBit] = None, **kwargs) -> OffBit: """Apply toggle operation to OffBit(s)""" if op == ToggleOperation.AND: if offbit2 is None: raise ValueError("AND operation requires two OffBits") result = self.toggle_algebra.and_op(offbit1, offbit2) elif op == ToggleOperation.XOR: if offbit2 is None: raise ValueError("XOR operation requires two OffBits") result = self.toggle_algebra.xor_op(offbit1, offbit2) elif op == ToggleOperation.OR: if offbit2 is None: raise ValueError("OR operation requires two OffBits") result = self.toggle_algebra.or_op(offbit1, offbit2) elif op == ToggleOperation.RESONANCE: frequency = kwargs.get('frequency', 3.14159) distance = kwargs.get('distance', 0.0) result = self.toggle_algebra.resonance_op(offbit1, frequency, distance) elif op == ToggleOperation.ENTANGLEMENT: if offbit2 is None: raise ValueError("Entanglement operation requires two OffBits") coherence = kwargs.get('coherence', 1.0) result1, result2 = self.toggle_algebra.entanglement_op(offbit1, offbit2, coherence) # Store both results, return first self.set_offbit(offbit2.position, result2) result = result1 elif op == ToggleOperation.SUPERPOSITION: offbits = kwargs.get('offbits', [offbit1]) weights = kwargs.get('weights', [1.0]) result = self.toggle_algebra.superposition_op(offbits, weights) else: raise ValueError(f"Unknown toggle operation: {op}") # Record operation for NRCI calculation self.toggle_history.append((offbit1, result)) return result def calculate_nrci(self) -> float: """Calculate current NRCI for the Bitfield""" return self.nrci_calculator.calculate(self.toggle_history, self.active_frequencies) def apply_glr_correction(self): """Apply GLR error correction to all OffBits""" corrected_offbits = {} for position, offbit in self.offbits.items(): neighbors = self.get_neighbors(position, radius=2) corrected = self.glr.correct_offbit(offbit, neighbors) corrected_offbits[position] = corrected # Update all OffBits with corrected versions self.offbits.update(corrected_offbits) def _is_valid_position(self, position: Tuple[int, int, int, int, int, int]) -> bool: """Check if position is within Bitfield dimensions""" return all(0 <= pos < dim for pos, dim in zip(position, self.dimensions)) def get_statistics(self) -> Dict[str, Union[int, float]]: """Get Bitfield statistics""" return { 'total_cells': self.total_cells, 'active_offbits': len(self.offbits), 'occupancy_ratio': len(self.offbits) / self.total_cells, 'current_nrci': self.calculate_nrci(), 'active_frequencies': len(self.active_frequencies), 'toggle_operations': len(self.toggle_history) } # Example usage and validation functions def create_sample_bitfield() -> UBPBitfield: """Create a sample Bitfield for testing""" bitfield = UBPBitfield() # Add some sample OffBits for i in range(10): position = (i, i, i, 0, 0, 0) bits = np.random.choice([True, False], size=24) offbit = OffBit(bits, position) bitfield.set_offbit(position, offbit) return bitfield def validate_nrci_target() -> bool: """Validate that NRCI can achieve target >99.9997%""" bitfield = create_sample_bitfield() # Perform some toggle operations for position, offbit in list(bitfield.offbits.items())[:5]: neighbors = bitfield.get_neighbors(position) if neighbors: result = bitfield.apply_toggle_operation( ToggleOperation.RESONANCE, offbit, frequency=14.134725 ) bitfield.set_offbit(position, result) # Apply GLR correction bitfield.apply_glr_correction() # Check NRCI nrci = bitfield.calculate_nrci() target_nrci = 0.999997 print(f"Achieved NRCI: {nrci:.6f}") print(f"Target NRCI: {target_nrci:.6f}") print(f"Target met: {nrci >= target_nrci}") return nrci >= target_nrci if __name__ == "__main__": # Run validation print("UBP Mathematical Framework Implementation") print("=" * 50) # Test basic functionality bitfield = create_sample_bitfield() stats = bitfield.get_statistics() print("Bitfield Statistics:") for key, value in stats.items(): print(f" {key}: {value}") print("\nValidating NRCI target...") validate_nrci_target()