import torch.nn as nn import torch from torch.nn import functional as F class Conv2d(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super(Conv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) def forward(self, x): # return super(Conv2d, self).forward(x) weight = self.weight weight_mean = weight.mean(dim=(1, 2, 3), keepdim=True) weight = weight - weight_mean std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5 weight = weight / std.expand_as(weight) return F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels): super().__init__() self.double_conv = nn.Sequential( Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1), nn.GroupNorm(32, out_channels), nn.LeakyReLU(0.2), nn.Dropout(0.5), Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1), nn.GroupNorm(32, out_channels), nn.LeakyReLU(0.2), ) def forward(self, x): return self.double_conv(x) class Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels) ) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels, bilinear=True): super().__init__() # if bilinear, use the normal convolutions to reduce the number of # channels if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) else: self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) # Given transposed=1, weight of size [48, 48, 2, 2], 48 -> 32+64//2, instead, # expected input[4, 64, 128, 128] to have 48 channels, but got 64 # channels instead def forward(self, x1, x2): # print(x1.shape) x1 = self.up(x1) # input is CHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) x = torch.cat([x2, x1], dim=1) return self.conv(x) class OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(OutConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) # self.conv = nn.Sequential( # nn.Conv2d(in_channels,out_channels,kernel_size=1), # nn.Sigmoid() # ) def forward(self, x): return self.conv(x) class ShallowSeg(nn.Module): def __init__(self, num_channels=3, num_classes=3, bilinear=True, pretrained=False, beta=False, weight_std=False, num_groups=32, out_dim=128, feats=[64, 64, 128, 256, 512]): super(ShallowSeg, self).__init__() self.num_channels = num_channels self.num_classes = num_classes self.bilinear = bilinear self.out_dim = out_dim # feats = [64, 64, 128, 256, 512] # feats = [32, 32, 64, 64, 128] self.inc = DoubleConv(num_channels, feats[0]) self.down1 = Down(feats[0], feats[1]) self.down2 = Down(feats[1], feats[2]) self.down3 = Down(feats[2], feats[3]) self.down4 = Down(feats[3], feats[4]) self.up1 = Up(feats[4] + feats[3], feats[3], bilinear) self.up2 = Up(feats[2] + feats[3], feats[2], bilinear) self.up3 = Up(feats[1] + feats[2], feats[1], bilinear) self.up4 = Up(feats[0] + feats[1], feats[0], bilinear) self.outc = OutConv(feats[0], num_classes) self.features_outc = OutConv(feats[0], out_dim) def forward(self, x): # b, c, h, w = x.shape # print(x.shape) x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) # features = self.features_outc(x) # print(dictionary.shape) logits = self.outc(x) return logits, x5