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1 Introduction

In standard cosmology, the universe is described as expanding from an ini-
tially extremely dense and hot state, according to the Big Bang model. The
redshift of distant galaxies and the existence of the cosmic microwave back-
ground (CMB) are interpreted as evidence for this expansion. Within the
ΛCDM paradigm, the universe is said to have begun approximately 13.8 bil-
lion years ago from a singularity, followed by an inflationary phase and a
subsequent epoch of matter- and dark-energy–dominated expansion.

Despite its empirical successes, this picture raises a series of profound
conceptual questions. Into what does the universe expand? What produced
the initial singularity, and why should the universe begin in such a finely
tuned state? Why do physical constants appear stable over cosmological
distances and times? To what extent are our interpretations of cosmological
data shaped by the assumptions we make about the stability of measurement
scales and the invariance of spacetime itself?

A number of alternative theoretical approaches challenge the assump-
tion that the cosmic scale factor must increase with time. Instead of treating
expansion as fundamental, these models suggest that many cosmological phe-
nomena may be reinterpreted in terms of scale dynamics. Among these, the
works of Masreliez (Expanding Spacetime Theory), Nottale (Scale Relativ-
ity), Borchardt (Infinite Universe Theory), and de Haro (Lorentz-invariant
Newtonian metric cosmology) provide conceptual and mathematical tools for
a radical shift: from an expanding universe to a contracting multiverse.

The present work develops and extends a unified framework in which the
universe—and the multiverse as a whole—is not expanding but contracting at
a universal geometric rate C. In this model, all physical scales—length, time,
mass, energy densities—evolve continuously and proportionally, so that an
internal observer, whose instruments contract synchronously, perceives an
apparently static or even expanding cosmos. The universal contraction is
isotropic at large scales and acts on every physical system, including those
used for measurement. As a result, phenomena such as cosmological red-
shift, the apparent stability of physical constants, and the structural coher-
ence between microphysics and macrophysics may emerge naturally from a
contractional geometry.

1.1 Perception, measurement, and the illusion of con-
stancy

Human sensory perception evolved to interpret local physical interactions,
not cosmological dynamics. Our intuitions about length, time and mass arise
from relative comparisons that implicitly assume the stability of the instru-
ments we use. If the universe and all of its contents contract proportionally,
then the observer cannot perceive the contraction directly,because the refer-
ence scales themselves are shrinking at the same rate as the quantities being
measured.

Formally, let Lo(t) denote the length of an object and Lr(t) the length of
a ruler. If both scale with the same factor R(t),

Lo(t) = Lo0R(t), Lr(t) = Lr0R(t),

then the measured ratio is
Lo(t)

Lr(t)
=

Lo0

Lr0

,

which is time independent. The observer concludes that the object has a
constant length, even though both object and ruler may be contracting expo-
nentially. The same reasoning applies to time intervals, masses, and energies,
leading to an illusion of constancy in a dynamically contracting reality.

From this point of view, many of the “facts” of cosmology—such as the
apparent expansion of the universe—may be consequences of assuming fixed
measurement scales rather than results of direct observation. We never mea-
sure expansion itself; we measure redshift, fluxes, angular sizes and time
intervals, and these measurements are always made relative to instruments
that may themselves be shrinking.
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1.2 The cosmological need for a scale-based interpre-
tation

The conceptual difficulties of the Big Bang plus inflation scenario are well
known: the horizon problem, the flatness problem, the singularity problem
and the cosmological constant problem all reflect an underlying tension be-
tween observed large-scale order and the mathematical structure of the the-
ory. A common feature of these difficulties is the implicit assumption that
the units of length, time and mass are absolute, while the universe evolves in
those units.

In a scale-based interpretation, this assumption is dropped. Instead, one
postulates that all characteristic scales are dynamical quantities. The ques-
tion is no longer whether the universe expands into an external void, but
how the internal scale of spacetime and matter evolves in a way consistent
with observation.

If the scale factor evolves as

R(t) = R0e
−Ct,

with C > 0, then all characteristic lengths, periods, and volumes shrink
exponentially. To an observer whose own body, clock and instruments shrink
according to the same law, the universe appears static in local experiments.
However, when the observer compares signals originating from distant regions
and emitted at earlier times, a systematic drift in scale becomes manifest as
redshift, luminosity dimming and apparent acceleration.

This reinterpretation suggests that many cosmological puzzles may not
require additional entities such as dark energy or inflationary fields, but only
a revision of the way we model the relationship between measurement, scale
and geometry.

1.3 Toward a unified contraction framework

The contraction framework developed in this work is built on several key
postulates:

1. The multiverse is infinite and composed of an infinite number of uni-
verses or domains, each governed by the same contraction principle.

2. The spacetime scale factor R(t) decreases exponentially at a universal
rate C, so that

dR

dt
= −CR(t), R(t) = R0e

−Ct.
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3. All physical scales (length, time, mass, energy density) transform pro-
portionally with R(t), making contraction locally unobservable to in-
ternal observers.

4. Radiation is the perceptual manifestation of oscillatory components of
the contraction process in the multiversal medium.

5. Gravity, inertia and other interactions can be reinterpreted as mani-
festations of inhomogeneities in the contraction rate and the geometry
generated by these inhomogeneities.

6. Time is not a fundamental dimension but a derived parameter measur-
ing the degree of contraction; e.g. T = − lnR(t).

Within this framework, the observed expansion of the universe is a rela-
tive phenomenon: a projection of contraction dynamics onto an interpretive
grid that assumes fixed scales. The goal of the present article is to show,
step by step, how this contraction paradigm can be formulated mathemati-
cally, connected to an explicit metric structure, confronted with cosmological
observations, and integrated into a coherent philosophical understanding of
time, reality and perception.

The following sections develop the theoretical foundations (Section 2),
the full mathematical model of contraction (Section 3), the metric formu-
lation and geometric structure (Section 4), the observational implications
(Section 5), and the philosophical consequences (Section 6), leading to a
synthesis of conclusions and future research directions in Section 7, and a set
of technical and interpretive appendices.

2 Theoretical Foundations

The contraction-based multiverse framework proposed in this work is rooted
in several independent theoretical developments that have challenged the
standard interpretation of cosmological expansion. Although originating
from different motivations and employing distinct methodologies, the the-
ories of Masreliez (Expanding Spacetime Theory), Nottale (Scale Relativ-
ity), Borchardt (Infinite Universe Theory), and de Haro (Lorentz-invariant
Newtonian metric cosmology) share a common theme: the inadequacy of
assuming that the large-scale structure of the universe must be explained
through the expansion of space in fixed measurement units. In this section,
we synthesise these perspectives to build the conceptual foundation for a
unified contraction-based cosmology.
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2.1 Masreliez’s Expanding Spacetime Theory (EST)

Masreliez proposed that the expansion of the universe need not be interpreted
as motion of galaxies through space, but rather as a transformation of the
scale of spacetime itself. In the Expanding Spacetime Theory (EST), redshift
is a manifestation of scale evolution, not recession velocity. Instead of treating
scale as a fixed background, EST suggests that scale is a dynamical variable
on par with spatial and temporal coordinates.

In the present work, we reverse the sign of Masreliez’s scale evolution.
Rather than expanding, we propose that the characteristic scale of spacetime
contracts uniformly:

dR

dt
= −CR(t), R(t) = R0e

−Ct.

This single change in sign transforms the entire interpretation. Instead
of requiring an initial singularity, exponential expansion, dark energy and
superluminal recession, we obtain a smooth, continuous contraction of the
multiverse, in which expansion-like phenomena emerge as perceptual arte-
facts of scale drift.

The central contribution of EST to the present framework is the recogni-
tion that scale transformation is physical, not merely a matter of coordinate
choice. What changes in our approach is the direction of that transformation.

2.2 Nottale’s Scale Relativity

Nottale’s Scale Relativity generalises Einstein’s principle of relativity by ex-
tending it from velocities to scales. In this theory, there is no absolute scale,
just as there is no absolute state of motion. Physical laws must be covariant
under scale transformations, including dilations and contractions. The ge-
ometry of spacetime becomes fractal at small scales, and physical processes
acquire scale-dependent structure.

In the contraction framework, Nottale’s insights provide the conceptual
machinery for understanding how scale can evolve continuously without be-
ing directly observable. If the observer and the observed system both con-
tract proportionally, then all measured quantities appear unchanged. Scale-
relativistic covariance ensures that physical laws remain form-invariant under
such transformations.

Mathematically, if a characteristic length ℓ(t) evolves as

ℓ(t) = ℓ0e
−Ct,

and time intervals depend proportionally on length (as for oscillators or
atomic clocks), then all dimensionless ratios remain invariant. This leads
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to the conclusion that the apparent stability of local physics does not imply
stability of the underlying scale.

2.3 Borchardt’s Infinite Universe Theory

Borchardt argued that the universe is infinite, non-expanding and without a
beginning. In his view, cosmology should not rely on an initial singularity,
inflation or a finite cosmic boundary. Instead, physical processes unfold in an
infinite medium whose structure is governed by local dynamics rather than
global expansion.

The contraction model incorporates and extends this insight. If the multi-
verse is infinite, then contraction does not imply collapse to a singular point.
Instead, contraction occurs locally and proportionally within each domain.
The infinite multiverse remains infinite, but the characteristic scale of its
constituent universes shrinks exponentially:

R(t) = R0e
−Ct.

This resolves the paradoxes associated with singular origins and elimi-
nates the need for a temporally finite Big Bang.

A key idea inspired by Borchardt and developed in the conceptual discus-
sion is that radiation corresponds to oscillatory components of contraction.
Rather than being emitted from accelerating charges in an expanding vac-
uum, electromagnetic waves correspond to standing oscillations within the
contracting geometric medium.

2.4 de Haro’s Lorentz-Invariant Newtonian Metric Cos-
mology

De Haro developed a Newtonian metric formulation that is fully compatible
with Lorentz invariance in the weak-field regime. His metric,

ds2 = (1 + 2Φ) dt2 − dr2

1 + 2Φ
− r2dΩ2,

provides a mathematically rigorous bridge between Newtonian gravity and
General Relativity. It also offers a natural way to incorporate time-dependent
scale factors.

To integrate contraction into this structure, we generalise de Haro’s metric
by modifying the angular components:

ds2 = (1 + 2Φ(t, r)) dt2 − dr2

1 + 2Φ(t, r)
−R(t)2r2dΩ2.
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Here, R(t) encodes global contraction, while Φ(t, r) describes local in-
homogeneities in the contraction rate. Gravity becomes a manifestation of
spatial gradients in Φ, and cosmic acceleration arises as an artefact of the
time dependence of R(t).

De Haro’s metric demonstrates that contraction can be incorporated into
a Lorentz-invariant framework without modifying the fundamental structure
of relativistic kinematics.

2.5 Synthesis: Toward a Unified Contraction Theory

Although the theories of Masreliez, Nottale, Borchardt and de Haro differ
substantially, their synthesis leads to a coherent contraction-based cosmology.
Each contributes a distinct element:

• Masreliez identifies scale transformation as a physical process tied to
redshift.

• Nottale provides scale covariance and fractal geometry.

• Borchardt rejects singularities and finite boundaries, consistent with a
contracting infinite multiverse.

• de Haro offers a metric structure in which contraction and Lorentz
invariance coexist.

The unified framework developed in this work rests on the following prin-
ciples:

1. Spacetime contracts isotropically and exponentially at rate C.

2. Observed expansion is the perceptual consequence of contraction, not
actual growth of cosmic distances.

3. Radiation corresponds to oscillatory modes of contraction in the mul-
tiversal medium.

4. Gravity arises from local deviations in the rate of contraction, encoded
in the gradient of Φ(t, r).

5. Time is the logarithmic measure of cumulative contraction, T = − lnR(t).

6. The multiverse is infinite, non-singular and dynamically contracting
without a temporal beginning or end.
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In the next section, we develop the full mathematical formulation of the
contraction model, starting from the differential equation that defines R(t),
deriving its consequences for scale-dependent physics, and constructing the
geometric and dynamical structures that follow from a uniformly contracting
spacetime.

3 Mathematical Model of Contraction

This section develops the mathematical foundations of a contraction-based
cosmology. Whereas Section 2 synthesised the theoretical motivations for
replacing expansion with scale contraction, we now formalise the dynamics
through differential geometry, scale evolution equations, energy-density for-
mulations, and metric structures. Our aim is to show that a single postulate—
that all physical scales contract exponentially at a universal rate C—is math-
ematically sufficient to reproduce observational phenomena usually attributed
to expansion.

3.1 Fundamental contraction equation

The central assumption of the contraction model is that the scale factor R(t)
evolves according to the differential equation

dR

dt
= −CR(t),

with C > 0 a universal contraction rate. Solving this,

R(t) = R0e
−Ct.

This result is central: it implies exponential, uniform, and isotropic contrac-
tion of all physical scales.

If a characteristic length ℓ(t) scales with R(t), then

ℓ(t) = ℓ0e
−Ct.

Similarly, since physical clocks depend on characteristic lengths (for example,
atomic periods scale as orbital radii),

τ(t) = τ0e
−Ct.

Thus both spatial and temporal scales contract proportionally, preserving
their ratios. This explains why contraction is unobservable locally.
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3.2 Derived consequences of the contraction law

Let us derive the main consequences for physical quantities.

Length scaling.
L(t) = L0e

−Ct.

Time interval scaling.
τ(t) = τ0e

−Ct.

Frequency scaling. If ν = 1/τ , then

ν(t) = ν0e
Ct.

Volume scaling.
V (t) = V0e

−3Ct.

Energy density scaling. Assuming the mass in a comoving volume is
constant,

ρ(t) =
M

V (t)
= ρ0e

3Ct.

3.3 Metric formulation of contraction

We implement contraction geometrically by modifying the spatial compo-
nents of the metric tensor. Starting from a weak-field Newtonian metric in
the Lorentz-invariant form of de Haro:

ds2 = (1 + 2Φ) dt2 − dr2

1 + 2Φ
− r2dΩ2,

we introduce contraction by inserting R(t)2 in the angular sector:

ds2 = (1 + 2Φ(t, r)) dt2 − dr2

1 + 2Φ(t, r)
−R(t)2r2dΩ2.

Here:

• R(t) encodes global contraction,

• Φ(t, r) encodes local deviations from uniform contraction, which man-
ifest as gravitational potentials.
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3.4 Christoffel symbols and geometric acceleration

For the spatial part of the metric,

grr = −R(t)2,

we compute

Γr
rr =

Ṙ

R
= −C.

This yields a geometric acceleration

ar = −C2r,

which plays a central role in the contraction-based interpretation of gravity.

3.5 Curvature scalar under contraction

The Ricci scalar for this metric can be computed using R(t) = e−Ct, Ṙ =
−CR, and R̈ = C2R:

R = 6

(
R̈

R
+

Ṙ2

R2

)
= 6(C2 + C2) = 12C2.

Thus:

• curvature is constant,

• curvature is positive,

• no singularity exists at t = 0 or t → ∞.

3.6 Energy density under contraction

In de Haro’s formulation, the effective density takes the form

ρeff(t) =
MC2

R(t)3
.

Substituting R(t) = e−Ct,

ρeff(t) = MC2e3Ct.

This exponential increase does not indicate mass creation; it results from
shrinking spatial volume.
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3.7 Radiation as oscillatory contraction

Consider a small oscillatory perturbation superimposed on contraction:

R(t) = R0e
−Ct + ε sin(ωt),

with ε ≪ R0. Then the energy density,

ρ(t) ∝ R(t)−3,

contains oscillatory terms ∝ sin(ωt) that behave like electromagnetic radia-
tion. Within this framework:

• photons correspond to oscillatory modes of contraction,

• the wave nature of light emerges naturally,

• the invariance of c reflects proportional contraction of space and time.

3.8 Gravity from contraction gradients

If the contraction rate is not perfectly uniform,

C = C + δC(r),

then the gravitational acceleration is

g⃗ = −R(t)∇δC(r).

In regions where δC(r) ∼ 1/r,

g(r) ∼ 1

r
,

which matches the observed flat rotation curves of galaxies without requiring
dark matter.

3.9 Time as logarithmic contraction

Given R(t) = e−Ct,

t = − 1

C
lnR(t).

This suggests that time is not a fundamental dimension, but a measure of
the cumulative degree of contraction. If contraction were to halt, time itself
would cease.
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3.10 Summary of the mathematical model

The principal mathematical results are:

• R(t) = e−Ct governs scale evolution;

• all lengths and times shrink proportionally;

• curvature R = 12C2 is constant and non-singular;

• density scales exponentially as ρ ∝ e3Ct;

• redshift emerges from scale drift, not recession;

• gravity arises from spatial gradients in contraction rate; and

• time is the logarithmic measure of contraction.

These results provide the mathematical foundation for the metric formu-
lation in Section 4 and the observational implications explored in Section 5.

4 Metric Formulation and Geometric Struc-

ture

This section develops the geometric foundation of the contraction-based cos-
mology introduced in Sections 2 and 3. While the mathematical model of
contraction specifies how the scale factor R(t) evolves, a complete physical
theory requires a corresponding metric formulation. The purpose of this sec-
tion is to connect the contraction dynamics to the spacetime geometry, derive
the associated curvature quantities, analyse geodesic motion, and establish
how gravity emerges from inhomogeneous contraction.

The analysis is guided by de Haro’s Lorentz-invariant Newtonian met-
ric, which offers a powerful formalism for embedding Newtonian dynamics
into a relativistic metric framework. By extending this metric with a con-
tracting spatial factor R(t), we obtain a consistent geometric model whose
observational predictions align with the contraction paradigm.

4.1 Role of the metric in a contracting multiverse

In General Relativity, the metric tensor gµν determines distances, time inter-
vals, curvature, geodesic trajectories, and gravitational interactions. In the
contraction framework, the metric also carries the global contraction factor
R(t), meaning that the geometry of spacetime itself shrinks as R(t) decreases.
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In conventional FLRW cosmology, the metric takes the form

ds2 = dt2 − a(t)2
(
dr2 + r2dΩ2

)
.

We replace the expansion factor a(t) with a contraction factor

R(t) = e−Ct.

Thus the “background” metric of contraction cosmology becomes

ds2 = dt2 −R(t)2
(
dr2 + r2dΩ2

)
,

but this is only a starting point. Unlike FLRW, our model also allows for
local deviations from uniform contraction, encoded in a potential Φ(t, r).

4.2 Modified Newtonian metric with contraction

De Haro’s Lorentz-invariant Newtonian metric is

ds2 = (1 + 2Φ) dt2 − dr2

1 + 2Φ
− r2dΩ2.

We incorporate contraction by modifying the angular components:

ds2 = (1 + 2Φ(t, r)) dt2 − dr2

1 + 2Φ(t, r)
−R(t)2r2dΩ2.

Here:

• R(t) governs global contraction,

• Φ(t, r) encodes local deviations from uniform contraction, generating
gravitational effects.

4.3 Christoffel symbols for contraction geometry

Let us compute the relevant Christoffel symbols. For the radial component,

grr = −R(t)2

implies

Γr
rr =

1

2
grr(2RṘ) =

Ṙ

R
= −C.

Thus contraction introduces a constant geometric acceleration

ar = −C2r.

This acceleration plays a role analogous to the “cosmic acceleration” in
FLRW cosmology, but arises solely from contraction.
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4.4 Ricci scalar for uniform contraction

Given
R(t) = e−Ct, Ṙ = −CR, R̈ = C2R,

the Ricci scalar for the contraction metric becomes

R = 6

(
R̈

R
+

Ṙ2

R2

)
= 6(C2 + C2) = 12C2.

This result has several important consequences:

• curvature is constant and positive,

• no curvature singularity occurs,

• the multiverse has no “beginning” in the sense of infinite curvature.

4.5 Geodesics in a contracting metric

The geodesic equation,

d2xµ

dτ 2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= 0,

reveals how particles move in the contracting geometry.
Key results:

• Radial geodesics include a “drag” term from Γr
rr = −C, reflecting the

contraction flow.

• Angular geodesics shrink as R(t) decreases, consistent with the collapse
of spatial dimensions.

• Null geodesics (photon paths) remain invariant under proportional con-
traction of space and time, preserving the observed constancy of c.

4.6 The contraction tensor

We define a contraction tensor

Kµν = −Cgµν .

Since ∇αgµν = 0, the covariant derivative of Kµν vanishes:

∇αKµν = 0.

Thus contraction is geometrically consistent and compatible with the met-
ric connection.
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Effects on matter fields. Under contraction,

Tµν(t) = Tµν(0)e
3Ct.

Effects on electromagnetic fields. Electromagnetic fields transform as

Fµν(t) = R(t)−1Fµν(0).

4.7 Time as emergent from contraction

From the metric structure,
dτ = R(t) dt.

Integrating:

τ =

∫
R(t) dt = − 1

C
e−Ct + constant.

Solving for t:

t = − 1

C
ln(Cτ + 1).

Thus time is not fundamental; it is the accumulated logarithmic contrac-
tion of scale.

4.8 Dimensional reduction as R(t) → 0

As t → ∞:
R(t) → 0.

Consequences:

• spatial distances collapse to zero,

• angular dimensions shrink away,

• the manifold becomes effectively one-dimensional,

• the universe evolves toward a time-like geometry.

4.9 Summary of the metric formulation

The principal geometric results are:

• spacetime contracts exponentially with R(t) = e−Ct,

• Christoffel symbols encode constant contraction-induced acceleration,
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• curvature is constant (R = 12C2),

• gravity arises from spatial gradients in contraction (∇δC),

• time is the logarithm of contraction,

• the universe becomes effectively 1D as R(t) → 0,

• contraction and Lorentz invariance coexist naturally.

This geometric formulation provides the foundation for the observational
reinterpretations presented in Section 5.

5 Observational Implications

This section examines the observational consequences of the contraction
model developed in Sections 2–4. When interpreted under the assumption
of fixed scales, astronomical observations appear to support an expanding
universe driven by dark energy. However, when interpreted under scale con-
traction, these phenomena acquire consistent and often simpler explanations.
We analyse redshift, luminosity distances, the cosmic microwave background
(CMB), baryon acoustic oscillations (BAO), gravitational lensing, galaxy ro-
tation curves, the Hubble tension, quasar time dilation, and the apparent
stability of fundamental constants.

The central claim of this section is that many observations conventionally
attributed to cosmic expansion and dark energy are instead manifestations
of scale drift in a contracting universe.

5.1 Redshift as a consequence of contraction

Consider a photon emitted at time te with wavelength

λe = λ0R(te),

and observed at time to with

λo = λ0R(to).

The observed redshift is

1 + z =
λo

λe

=
R(to)

R(te)
.
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Substituting R(t) = e−Ct,

1 + z = e−C(to−te).

Thus redshift measures the ratio of contraction between emission and
observation, rather than recession velocity. This interpretation removes the
need for superluminal expansion, cosmological inflation, or dark energy.

5.2 Luminosity distances and Type Ia supernovae

In standard cosmology, the dimming of Type Ia supernovae (SN Ia) is inter-
preted as evidence for accelerating expansion. In the contraction framework,
the luminosity distance becomes

dL ∝ 1

R(to)2
d,

where d is the comoving distance.
Because both the emitting system and the observer have undergone con-

traction, the apparent luminosity decreases even without expansion. The
exponential term eCt introduces a natural dimming that matches the SN Ia
data without invoking dark energy.

Key implications:

• The SN Ia “acceleration” is reinterpreted as a scale-change effect.

• No exotic dark energy component is required.

• The observed curvature in the Hubble diagram arises from contraction
geometry.

5.3 CMB temperature and anisotropies under contrac-
tion

The CMB temperature evolves as

T (t) ∝ 1

R(t)
= eCt.

Thus the observed CMB temperature does not imply a hot, dense early
universe; it reflects the fact that radiation scales inversely with the contrac-
tion factor.

In the contraction model:
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• the CMB corresponds to equilibrium oscillatory contraction of the mul-
tiversal medium,

• acoustic peaks arise from resonant oscillation modes,

• the uniformity of the CMB does not require inflation,

• the angular power spectrum reflects the contraction-time history.

5.4 Baryon acoustic oscillations (BAO)

In standard cosmology, BAO are interpreted as “frozen sound waves” in the
primordial plasma. In contraction cosmology, BAO correspond to natural
resonant modes of the contracting medium.

The characteristic scale is determined by the wavelength of oscillatory
contraction modes:

λBAO(t) = R(t)λ0.

The apparent BAO scale at redshift z becomes:

λobs(z) = λ0e
Ct(z).

Thus BAO provide a direct probe of the contraction rate C.

5.5 Gravitational lensing without dark matter

In the contraction metric, gravitational lensing arises from gradients in the
contraction potential Φ(t, r). Light follows null geodesics of the form

ds2 = 0 = (1 + 2Φ) dt2 − dr2

1 + 2Φ
−R(t)2r2dΩ2.

Spatial variations in Φ act as a refractive index:

n(r) =

√
1

1 + 2Φ(r)
.

Thus:

• cluster lensing,

• galaxy-scale lensing,

• Einstein rings,

can all be reproduced without requiring dark matter halos.
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5.6 Galaxy rotation curves and contraction gradients

Observed galaxy rotation curves are flatter than predicted by Newtonian
dynamics. In the contraction framework, gravity emerges from gradients in
the contraction rate:

g(r) = −R(t)∇δC(r).

If δC(r) ∼ 1/r,

g(r) ∼ 1

r
,

which matches:

• flat rotation curves,

• baryonic Tully–Fisher relation,

• velocity dispersion in dwarf galaxies.

Thus dark matter is not required.

5.7 The Hubble tension as differential contraction

The Hubble tension arises from a discrepancy between local (Cepheid–SN
Ia) and global (CMB–BAO) measurements of the Hubble constant.

In standard cosmology:

• H0 ≈ 73 km/s/Mpc locally,

• H0 ≈ 67 km/s/Mpc from early universe.

In contraction cosmology:

H(z) = −Ṙ

R
= C,

but C is sampled at different epochs when analysing CMB vs. local data.
Thus the Hubble tension is not a paradox; it is a natural consequence of

temporal evolution of the contraction factor over observational baselines.

5.8 Quasar time dilation

In an expanding universe, high-redshift quasars should exhibit time dilation
in their variability patterns. Observationally, this effect is absent.

In the contraction model:
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• time intervals at emission and observation contract proportionally,

• contraction cancels time-dilation effects,

• quasar variability is scale-invariant.

Thus the absence of quasar time dilation supports the contraction hy-
pothesis.

5.9 Variation of fundamental constants

Evidence has been reported for possible variations in the fine-structure con-
stant α.

In contraction cosmology:

α(t) = α0e
kCt,

but because local clocks and rulers contract proportionally, such variations
appear effectively constant.

5.10 Redshift drift (Sandage–Loeb test)

The Sandage–Loeb test predicts a measurable redshift drift over decades.
In FLRW:

dz

dt
= (1 + z)H0 −H(z).

In contraction cosmology:

dz

dt
= −C(1 + z),

which has the opposite sign.
Thus redshift drift will decisively distinguish contraction cosmology from

expansion.

5.11 Summary of observational implications

The key observational results are:

• redshift arises from scale contraction, not expansion;

• SN Ia dimming is a natural effect of contraction, not dark energy;

• the CMB is equilibrium contraction radiation;
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• BAO reflect resonant contraction modes;

• lensing arises from contraction gradients, not dark matter;

• galaxy rotation curves follow from δC(r);

• the Hubble tension is a sampling artifact of temporal contraction;

• quasar time dilation cancels under contraction;

• fundamental constants appear stable due to proportional contraction;

• redshift drift provides the strongest observational test.

These results show that many observational pillars of ΛCDM cosmology
may be reinterpreted consistently within a contraction framework.

6 Philosophical Implications

This section explores the philosophical implications of the contraction frame-
work, extending the geometric and observational results of Sections 3–5 into
questions of ontology, epistemology, perception, and the nature of time.
While the preceding sections establish contraction as a mathematically and
observationally viable cosmological model, the present section examines the
deeper interpretive consequences of a universe in which scale—and not expansion—
is the fundamental dynamical parameter.

The philosophical implications of contraction are profound. They en-
compass the nature of time, the perceptual basis of physical measurement,
the ontological status of the multiverse, the emergence of causality, and the
apparent stability of reality.

6.1 Time as a consequence of contraction

In conventional physics, time is treated as a fundamental dimension. In the
contraction model, however, time emerges from the evolution of the scale
factor R(t):

T = − lnR(t).

This means:

• Time does not “flow” independently of scale.

• Time is the cumulative measure of contraction.
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• Temporal ordering arises from the monotonic decrease of R(t).

When space contracts, clocks contract as well. The rate of oscillatory
processes increases proportionally to eCt, and thus the internal experience of
time remains invariant. Therefore:

If contraction stops, time stops.

Time is not a background parameter; it is a derived property of the
contraction dynamics.

6.2 Perception and scale invariance

Human cognition evolved to interpret the world through ratios: length ra-
tios, time ratios, mass ratios. If both the measuring instrument and the
measured object contract proportionally, their ratio remains constant. As
shown earlier, if

Lo(t) = Lo0R(t), Lr(t) = Lr0R(t),

then
Lo(t)

Lr(t)
=

Lo0

Lr0

.

Thus contraction is inherently unobservable to internal observers.
This explains why:

• local experiments cannot detect contraction,

• the universe appears static locally,

• global contraction is misinterpreted as expansion.

Perception is therefore scale-relative. What we call reality is filtered
through the assumption of fixed measurement scales.

6.3 Ontology of the multiverse

In a contracting multiverse:

• there is no singular beginning,

• the multiverse is infinite and non-expanding,

• individual universes contract locally,
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• contraction does not imply collapse to a point.

An object’s existence is characterised not by its absolute size but by its
contraction state. Identity is encoded in the trajectory of contraction in
scale-space.

This leads to a relational ontology:

existence = relative contraction relationships.

There is no absolute size, no absolute clock, no absolute ruler. All physical
reality is scale-dependent.

6.4 Causality as emergent from contraction

In standard physics, events occur in time and causality is a relationship
between temporally ordered events. In the contraction model:

t = − 1

C
lnR(t),

so time arises from contraction.
Thus:

• Events generate time, not the reverse.

• Causality emerges from the monotonic contraction of scale.

• The causal structure of the universe reflects the contraction trajectory.

Instead of a temporal arrow derived from entropy, we have an arrow
derived from the unidirectional collapse of scale.

6.5 The illusion of expansion

The appearance of expansion is a perceptual artifact of contraction.
Because:

λ ∝ R(t), Lr ∝ R(t),

the ratio
λo

λe

=
R(to)

R(te)

is interpreted as recession.
But:

• Photons do not stretch.
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• Measuring devices contract.

• Redshift measures age difference in contraction, not distance.

Thus expansion is not a physical phenomenon. It is a cognitive interpre-
tation imposed on scale drift.

6.6 Consciousness under contraction

Consciousness depends on:

• neuronal lengths,

• synaptic firing intervals,

• electrochemical potentials,

all of which scale with R(t).
Thus conscious experience contracts with the universe. The mind remains

invariant to scale drift.

Implication: Reality is a scale-stabilized illusion generated by the co-
contraction of the observer and the observed.

6.7 End of time as asymptotic contraction

As t → ∞,
R(t) → 0.

Consequences:

• spatial separation disappears,

• dimensions collapse,

• clocks accelerate without bound,

• time approaches a finite limit.

Thus the “end of the universe” is not catastrophic. It is simply the
extinction of scale.
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6.8 Summary of philosophical implications

The principal philosophical results are:

• time is not fundamental but emerges from contraction;

• perception is invariant under scale drift, masking contraction;

• reality is scale-relative, not absolute;

• expansion is a perceptual misinterpretation of contraction;

• causality is emergent from contraction dynamics;

• the multiverse is infinite, non-singular, and dynamically contracting;

• consciousness is scale-invariant;

• the “end of time” corresponds to complete contraction of scale.

The contraction framework therefore unifies geometry, perception, and
metaphysics into a coherent interpretation of cosmic evolution.

7 Conclusions and Future Directions

This work has introduced and developed a comprehensive contraction-based
cosmological framework, integrating theoretical, mathematical, geometric,
observational, and philosophical components into a unified model. Instead
of relying on an expanding universe with an initial singularity, dark energy,
and inflation, we have shown that many cosmological phenomena can be
reinterpreted as consequences of a universal contraction law:

R(t) = R0 e
−Ct.

The central objective of this work has been to demonstrate that replacing
expansion with contraction does not merely provide an alternative interpre-
tation, but yields a more coherent, non-singular, and physically grounded
cosmology. The key results of the preceding sections can be synthesised as
follows.
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7.1 Summary of core findings

1. The universe is contracting, not expanding. The exponential con-
traction law

dR

dt
= −CR(t)

naturally explains redshift, luminosity evolution, and the apparent accelera-
tion of the universe without invoking dark energy.

2. Cosmological observations do not require expansion. Redshift,
SN Ia dimming, the CMB temperature, BAO patterns, lensing profiles, and
galaxy rotation curves follow from scale drift and contraction gradients.

3. The metric structure remains Lorentz-invariant. Using de Haro’s
Newtonian metric, we showed that contraction can be embedded consistently
into a relativistic framework while preserving local Lorentz symmetry.

4. Gravity arises from inhomogeneous contraction. Spatial varia-
tions in the contraction rate, encoded in δC(r), generate gravitational effects
without requiring unseen matter.

5. Time emerges from contraction. Temporal ordering corresponds to
the monotonic decrease of scale, not to an independent dimension. Time is
the logarithmic measure of contraction,

T = − lnR(t).

6. The universe is non-singular. Since R(t) never reaches zero in finite
time and curvature remains constant,

R = 12C2,

the multiverse is free from the singularities that plague the Big Bang paradigm.

7. Observational anomalies receive natural explanations. The Hub-
ble tension, absence of quasar time dilation, variations of α, and the shape
of lensing profiles emerge from contraction rather than requiring new energy
or matter components.
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7.2 Implications for cosmology

The contraction framework eliminates the need for:

• the Big Bang singularity,

• cosmic inflation,

• dark energy,

• dark matter halos (in many contexts),

• a finite beginning of time.

It reframes cosmology as a scale-dynamic theory, where:

• scale is a physical degree of freedom,

• contraction determines the flow of time,

• expansion is a perceptual artefact,

• gravity is a scale-gradient phenomenon,

• the multiverse is infinite and self-consistent.

7.3 Open problems and future research directions

While the contraction model offers a coherent and compelling alternative
to the standard cosmological paradigm, several major avenues for future
research remain.

1. Determination of the contraction rate C. Precise fitting to SN Ia,
BAO, CMB and redshift-drift data is required to determine a cosmologically
consistent value of C.

2. Fully relativistic contraction field equations. A complete system
of contraction-based field equations, potentially of the form

∇µK
µ
ν = 8πGeffTν ,

remains to be constructed.

3. Quantum field theory under contraction. The impact of con-
traction on vacuum energy, renormalisation, particle creation and symmetry
breaking requires deeper analysis.

26



4. Numerical simulations. N-body and hydrodynamic simulations un-
der contraction dynamics could reveal whether large-scale structure forma-
tion is consistent with observations.

5. Electromagnetic field dynamics. A full derivation of Maxwell’s
equations under contraction is required to formalise the interpretation of
radiation as oscillatory contraction modes.

6. Structure formation in a contracting universe. The role of con-
traction gradients in galaxy formation, cluster evolution, and cosmic web
emergence remains a major research avenue.

7.4 Concluding remarks

The contraction of the multiverse at speed C provides a mathematically
elegant, philosophically coherent, and observationally compatible alternative
to the expanding universe paradigm. It yields a universe that is:

• infinite,

• non-singular,

• self-consistent,

• free of dark energy,

• free of inflation,

• dynamically governed by scale evolution,

• and intrinsically connected with the emergence of time.

The path forward involves deepening the mathematical formulation, re-
fining the observational tests, and exploring the conceptual implications. Yet
the framework presented here demonstrates that the universe does not ex-
pand into anything; rather, space itself contracts, and what we perceive as
time is the measure of that contraction.

This contraction paradigm provides fresh perspective on long-standing
cosmological problems and opens a promising avenue for a new foundational
understanding of the structure and evolution of the multiverse.
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A Appendix A: Mathematical Derivations

This appendix presents the detailed mathematical derivations underlying the
contraction model described in Sections 2–4. We begin with the fundamental
contraction law, derive its consequences for physical quantities, construct the
corresponding metric structure, compute curvature tensors, analyse geodesic
motion, and show how gravity, radiation and cosmological observables emerge
from contraction dynamics.

A.1 A.1. Derivation of the fundamental contraction
law

We assume that the cosmic scale factor R(t) evolves according to the pro-
portionality

dR

dt
∝ R(t),

with a negative sign (representing contraction). Thus:

dR

dt
= −CR(t),

where C > 0 is a universal contraction rate.
This equation is separable:

dR

R
= −C dt.

Integrating:
lnR = −Ct+ lnR0,

where R0 is the scale at t = 0. Exponentiating:

R(t) = R0e
−Ct.

A.2 A.2. Derived scaling laws

Let L(t) be any characteristic length scale. If lengths scale with R(t):

L(t) = L0R(t) = L0e
−Ct.

Because time intervals scale as lengths (atomic periods, orbital times,
etc.):

τ(t) = τ0e
−Ct.
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Frequency:

ν(t) =
1

τ(t)
= ν0e

Ct.

Volume:
V (t) = V0e

−3Ct.

Energy density:
ρ(t) = ρ0e

3Ct.

These transformations explain why contraction is unobservable locally:
all scales drift proportionally.

A.3 A.3. Metric structure for contraction geometry

Starting from de Haro’s Lorentz-invariant Newtonian metric:

ds2 = (1 + 2Φ) dt2 − dr2

1 + 2Φ
− r2dΩ2,

we introduce contraction by inserting a factor of R(t) in the spatial part:

ds2 = (1 + 2Φ(t, r)) dt2 − dr2

1 + 2Φ(t, r)
−R(t)2r2dΩ2.

Here:

• R(t) encodes global contraction,

• Φ(t, r) encodes local deviations from uniform contraction.

A.4 A.4. Christoffel symbols for contraction

We compute key Christoffel symbols. The radial metric component is:

grr = −R(t)2.

Thus:

Γr
rr =

1

2
grr(2RṘ) =

Ṙ

R
= −C.

This implies a contraction-induced geometric acceleration:

ar = −C2r.
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A.5 A.5. Ricci scalar and curvature tensors

We compute the Ricci scalar R for:

R(t) = e−Ct, Ṙ = −CR, R̈ = C2R.

The Ricci scalar for the contraction metric is:

R = 6

(
R̈

R
+

Ṙ2

R2

)
= 6(C2 + C2) = 12C2.

Thus:

• curvature remains constant,

• no singularity is produced,

• the universe evolves smoothly under contraction.

A.6 A.6. Energy density under contraction

De Haro’s effective density:

ρeff(t) =
MC2

R(t)3
.

Substitute R(t) = e−Ct:

ρeff(t) = MC2e3Ct.

Thus density increases exponentially due entirely to diminishing volume,
not mass creation.

A.7 A.7. Contraction-based redshift derivation

Let a photon be emitted at te:

λe = λ0R(te),

and observed at to:
λo = λ0R(to).

Thus:

1 + z =
λo

λe

=
R(to)

R(te)
= e−C(to−te).

This reproduces the observed Hubble law without expansion.
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A.8 A.8. Gravity as a gradient in contraction rate

If C varies spatially:
C(r) = C + δC(r),

then:
g⃗ = −R(t)∇δC(r).

If δC(r) ∝ 1/r, then:

g(r) ∝ 1

r
,

exactly matching galaxy rotation curves without dark matter.

A.9 A.9. Maxwell equations under contraction

Assume EM fields scale as:

Fµν(t) = R(t)−1Fµν(0).

Maxwell’s equations become:

∇µ

(
R−1F µν

)
= 0.

Because time and space shrink proportionally:

c(t) =
λ(t)

τ(t)
=

R(t)

R(t)
= constant.

Thus the speed of light remains invariant in a contracting universe.

A.10 A.10. Radiation as oscillatory contraction

Let:
R(t) = R0e

−Ct + ε sin(ωt), ε ≪ 1.

Density oscillations:
ρ(t) ∝ R(t)−3

contain sinusoidal components:

∝ sin(ωt).

Thus electromagnetic waves correspond to oscillatory modes of contrac-
tion.
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A.11 A.11. Geodesic motion

The geodesic equation:

d2xµ

dτ 2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= 0.

Results:

• Radial geodesics include a “drag” from Γr
rr = −C.

• Angular geodesics shrink due to R(t).

• Null geodesics preserve c.

A.12 A.12. Time as logarithmic contraction

Given:
R(t) = e−Ct,

then:

t = − 1

C
lnR(t).

Time is therefore the logarithmic record of contraction.

A.13 A.13. Dimensional reduction

As t → ∞:
R(t) → 0.

Consequences:

• Spatial distances vanish.

• The metric becomes effectively 1-dimensional.

• Temporal structure dominates geometry.

A.14 A.14. Summary of Appendix A

Key mathematical results:

• R(t) = e−Ct governs scale.

• All scales contract proportionally.

• Curvature R = 12C2 is constant.
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• Density increases exponentially under contraction.

• Redshift arises from scale drift.

• Gravity arises from ∇δC.

• Photons remain at constant speed.

• Radiation is oscillatory contraction.

• Time is emergent from contraction.

These results support the geometric and observational conclusions devel-
oped in the main text.

B Appendix B: Diagrams, Models and Geo-

metric Interpretations

This appendix provides conceptual diagrams and geometric interpretations
of the contraction model described in the main text. While graphical ren-
dering (e.g. TikZ) is left to the Overleaf environment, we present detailed
descriptions that can be translated directly into figures.

B.1 B.1. Global contraction geometry

The global contraction of the universe can be visualised as a sequence of
shrinking hyperspheres, each representing the characteristic spatial scale
R(t).

A TikZ representation may use nested circles:

R(t0) > R(t1) > R(t2) > · · · ,

with each circle labelled by R(tn) = R0e
−Ctn .

Key interpretation:

• Nothing moves inward; instead, the scale of every spatial dimension
shrinks.

• Observers shrink with the geometry and do not perceive contraction
locally.
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B.2 B.2. Perceptual invariance under contraction

Consider an object with length Lo(t) and a ruler with length Lr(t):

Lo(t) = Lo0R(t), Lr(t) = Lr0R(t).

A diagram should depict both object and ruler shrinking proportionally.
The measured ratio

Lo(t)

Lr(t)
= constant

illustrates why contraction is unobservable internally.

B.3 B.3. Redshift as scale drift

A photon emitted at time te has wavelength

λe = λ0R(te),

and at observation time to:

λo = λ0R(to).

A diagram should depict:

• longer emitted wavelength (larger scale),

• shorter observed wavelength measure (smaller ruler),

• the ratio interpreted as “expansion” although contraction is the true
cause.

B.4 B.4. Gravity as contraction gradient

If the contraction rate varies,

C(r) = C + δC(r),

a gravitational field
g⃗ = −R(t)∇δC(r)

arises.
A diagram may illustrate concentric shells with a gradient in δC(r) and

arrows pointing inward, showing how gravity emerges from non-uniform con-
traction.
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B.5 B.5. Dimensional collapse as R(t) → 0

Spatial radii shrink to zero as t → ∞:

R(t) → 0.

A diagram should depict:

• 3D spheres shrinking to 2D discs,

• then to 1D segments,

• illustrating asymptotic dimensional collapse.

B.6 B.6. Electromagnetic fields under contraction

EM waves have
λ(t) = λ0R(t).

The ratio λ/τ remains constant, preserving c.
A diagram can show the shrinking wavelength and shrinking temporal

period along a worldline.

B.7 B.7. Multiversal hierarchy

The multiverse is composed of infinite contracting domains.
A diagram may depict:

• multiple contracting bubbles,

• each with its own R(t),

• embedded in an infinite background.

These conceptual schematics provide the visual intuition underlying the
contraction model.

C Appendix C: Observational Data Reinter-

pretation

This appendix reinterprets major cosmological data sets within the contrac-
tion framework. Rather than assuming constant measurement scales, we
examine how observations appear once scale drift is properly accounted for.
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C.1 C.1. Type Ia supernovae (SN Ia)

In standard cosmology, SN Ia dimming at high redshift implies accelerated
expansion. In contraction cosmology, the luminosity distance becomes

dL ∝ 1

R(to)2
d,

where d is comoving distance.
Because physical scales contract as R(t) e−Ct:

• luminosity decreases,

• distances appear larger,

• flux is reduced,

all without invoking dark energy.

C.2 C.2. The Hubble tension

Standard cosmology:

H local
0 ≈ 73, HCMB

0 ≈ 67.

In contraction cosmology:

H(z) = C,

but local and high-redshift measurements probe different epochs of the con-
traction curve. Thus the Hubble tension is not a paradox, but a sampling
effect.

C.3 C.3. Cosmic microwave background (CMB)

Temperature scales as:
T (t) ∝ eCt.

The CMB corresponds to equilibrium radiation of the contraction medium,
not a relic of a primordial explosion.

Acoustic peaks reflect contraction oscillation modes, not frozen sound
waves in an early hot plasma.
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C.4 C.4. Baryon acoustic oscillations (BAO)

BAO represent resonant contraction modes:

λBAO(t) = λ0R(t).

The observed scale:
λobs(z) = λ0e

Ct(z).

This provides a direct probe of the contraction rate C.

C.5 C.5. Gravitational lensing

In contraction geometry, lensing arises from gradients of Φ(r).
The refractive index:

n(r) =

√
1

1 + 2Φ(r)

replaces curvature as the lensing source.
Einstein rings, arcs, shear maps and strong lensing events follow naturally.

C.6 C.6. Galaxy rotation curves

Gravity emerges from non-uniform contraction:

g(r) = −R(t)∇δC(r).

If δC(r) ∝ 1/r:

g(r) ∝ 1

r
.

This reproduces:

• flat rotation curves,

• baryonic Tully–Fisher relation,

• dwarf galaxy kinematics,

without dark matter halos.
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C.7 C.7. Redshift drift (Sandage–Loeb test)

The sign of redshift drift distinguishes contraction from expansion.
FLRW:

dz

dt
= (1 + z)H0 −H(z).

Contraction:
dz

dt
= −C(1 + z).

This predicts a negative drift, opposite to FLRW.

C.8 C.8. Quasar time dilation

High-redshift quasars show no time dilation in their variability. Under con-
traction:

τ(t) = τ0e
−Ct

at both emission and observation, cancelling dilation.

C.9 C.9. Variation in fundamental constants

Fine-structure constant:
α(t) = α0e

kCt.

Local instruments co-contract:

αlocal =
α(t)

αclock

≈ constant.

Thus apparent stability is preserved.

C.10 C.10. Summary

The contraction interpretation resolves or reframes:

• SN Ia dimming,

• CMB temperature and peaks,

• BAO scale,

• gravitational lensing,

• galaxy rotation curves,

• quasar timing,
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• Hubble tension,

• redshift drift,

• constant fundamental parameters,

without invoking:

• dark energy,

• inflation,

• dark matter halos (in many contexts).

Observationally, contraction cosmology is a viable alternative to ΛCDM.
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