""" Adapted from https://github.com/rst Ignore: import liberator lib = liberator.Liberator() from timm.models.layers import DropPath, trunc_normal_ lib.add_dynamic(DropPath) lib.add_dynamic(trunc_normal_) lib.expand(['timm']) print(lib.current_sourcecode()) """ from einops import rearrange import math import warnings # from timm.models.layers import DropPath # from timm.models.layers import trunc_normal_ import torch import torch.nn as nn def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) # NOQA u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) def drop_path(x, drop_prob: float = 0., training: bool = False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout, out_dim=None): super().__init__() self.fc1 = nn.Linear(dim, hidden_dim) self.act = nn.GELU() if out_dim is None: out_dim = dim self.fc2 = nn.Linear(hidden_dim, out_dim) self.drop = nn.Dropout(dropout) @property def unwrapped(self): return self def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, heads, dropout): super().__init__() self.heads = heads head_dim = dim // heads self.scale = head_dim ** -0.5 self.attn = None self.qkv = nn.Linear(dim, dim * 3) self.attn_drop = nn.Dropout(dropout) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(dropout) @property def unwrapped(self): return self def forward(self, x, mask=None): B, N, C = x.shape qkv = ( self.qkv(x) .reshape(B, N, 3, self.heads, C // self.heads) .permute(2, 0, 3, 1, 4) ) q, k, v = ( qkv[0], qkv[1], qkv[2], ) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x, attn class Block(nn.Module): def __init__(self, dim, heads, mlp_dim, dropout, drop_path): super().__init__() self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.attn = Attention(dim, heads, dropout) self.mlp = FeedForward(dim, mlp_dim, dropout) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, x, mask=None, return_attention=False): y, attn = self.attn(self.norm1(x), mask) if return_attention: return attn x = x + self.drop_path(y) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class DecoderLinear(nn.Module): def __init__(self, n_cls, patch_size, d_encoder): super().__init__() self.d_encoder = d_encoder self.patch_size = patch_size self.n_cls = n_cls self.head = nn.Linear(self.d_encoder, n_cls) self.apply(init_weights) @torch.jit.ignore def no_weight_decay(self): return set() def forward(self, x, im_size): H, W = im_size GS = H // self.patch_size x = self.head(x) x = rearrange(x, "b (h w) c -> b c h w", h=GS) return x # @ub.memoize def _string_to_hashvec(key, hasher='blake3'): """ Example: from geowatch.tasks.fusion.architectures.segmenter_decoder import * # NOQA key = '' key_tensor = _string_to_hashvec(key) _string_to_hashvec('hi') _string_to_hashvec('class-name', 'xxh64') _string_to_hashvec('class-name', 'blake3') _string_to_hashvec('class-name', 'sha512') _string_to_hashvec('class-name', 'sha512') """ import ubelt as ub import numpy as np # Maybe this should be a model responsibility. # I dont like defining the positional encoding in the dataset key_hash = ub.hash_data(key, base='hex', hasher=hasher).encode() key_tensor = np.frombuffer(memoryview(key_hash), dtype=np.int32).astype(np.float32) key_tensor = key_tensor / np.linalg.norm(key_tensor) return key_tensor class MaskTransformerDecoder(nn.Module): """ This was originally the MaskTransformer and is being modified for the arbitrary output size design. Example: >>> from geowatch.tasks.fusion.architectures.segmenter_decoder import * # NOQA >>> self = MaskTransformerDecoder(8, n_layers=8) >>> # Batch size, number of tokens, and token dimension size >>> B, N, D = 1, 10, self.d_model >>> x = torch.rand(B, N, D) >>> y = self.forward(x) >>> assert y.shape[0:2] == x.shape[0:2], 'only in case where x is token size' >>> assert y.shape[2] == self.n_cls, 'should always be true' """ def __init__( self, n_cls, d_model=192, n_layers=2, d_encoder='auto', n_heads='auto', d_ff='auto', drop_path_rate=0.0, dropout=0.1, ): super().__init__() dim = d_model if d_encoder == 'auto': d_encoder = dim if n_heads == 'auto': n_heads = dim // 64 if d_ff == 'auto': d_ff = 4 * dim self.d_encoder = d_encoder self.n_layers = n_layers self.n_cls = n_cls self.d_model = d_model self.d_ff = d_ff self.scale = d_model ** -0.5 dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)] self.blocks = nn.ModuleList( [Block(d_model, n_heads, d_ff, dropout, dpr[i]) for i in range(n_layers)] ) self.cls_emb = nn.Parameter(torch.randn(1, n_cls, d_model)) self.proj_dec = nn.Linear(d_encoder, d_model) self.proj_patch = nn.Parameter(self.scale * torch.randn(d_model, d_model)) self.proj_classes = nn.Parameter(self.scale * torch.randn(d_model, d_model)) self.decoder_norm = nn.LayerNorm(d_model) self.mask_norm = nn.LayerNorm(n_cls) self.apply(init_weights) trunc_normal_(self.cls_emb, std=0.02) @torch.jit.ignore def no_weight_decay(self): return {"cls_emb"} def forward(self, x): """ """ input_shape = x.shape B, *ST, F = input_shape x = self.proj_dec(x.view(B, -1, F)) # Add the special class embedding tokens to the end of the seqeunce cls_emb = self.cls_emb.expand(x.size(0), -1, -1) x = torch.cat((x, cls_emb), 1) for blk in self.blocks: x = blk(x) x = self.decoder_norm(x) # Break up the processed patch and class tokens patches, cls_seg_feat = x[:, : -self.n_cls], x[:, -self.n_cls :] # Dot product them together patches = patches @ self.proj_patch cls_seg_feat = cls_seg_feat @ self.proj_classes patches = patches / patches.norm(dim=-1, keepdim=True) cls_seg_feat = cls_seg_feat / cls_seg_feat.norm(dim=-1, keepdim=True) masks = patches @ cls_seg_feat.transpose(1, 2) masks = self.mask_norm(masks) # masks = rearrange(masks, "b (h w) n -> b n h w", h=int(GS)) # Keep the same shape as the input? (except if we do the hack to make our own output) masks = masks.view(*input_shape[0:-1], -1) return masks def get_attention_map(self, x, layer_id): if layer_id >= self.n_layers or layer_id < 0: raise ValueError( f"Provided layer_id: {layer_id} is not valid. 0 <= {layer_id} < {self.n_layers}." ) x = self.proj_dec(x) cls_emb = self.cls_emb.expand(x.size(0), -1, -1) x = torch.cat((x, cls_emb), 1) for i, blk in enumerate(self.blocks): if i < layer_id: x = blk(x) else: return blk(x, return_attention=True)