from _typeshed import Incomplete from collections.abc import Callable, Iterable, Mapping, Sequence from typing import Any, Literal, TypeAlias, overload from typing_extensions import TypeVar import numpy as np import numpy.typing as npt from numpy._typing import _AnyShape, _DTypeLike, _DTypeLikeVoid from numpy.ma.mrecords import MaskedRecords __all__ = [ "append_fields", "apply_along_fields", "assign_fields_by_name", "drop_fields", "find_duplicates", "flatten_descr", "get_fieldstructure", "get_names", "get_names_flat", "join_by", "merge_arrays", "rec_append_fields", "rec_drop_fields", "rec_join", "recursive_fill_fields", "rename_fields", "repack_fields", "require_fields", "stack_arrays", "structured_to_unstructured", "unstructured_to_structured", ] _T = TypeVar("_T") _ShapeT = TypeVar("_ShapeT", bound=tuple[int, ...]) _ScalarT = TypeVar("_ScalarT", bound=np.generic) _DTypeT = TypeVar("_DTypeT", bound=np.dtype) _ArrayT = TypeVar("_ArrayT", bound=npt.NDArray[Any]) _VoidArrayT = TypeVar("_VoidArrayT", bound=npt.NDArray[np.void]) _NonVoidDTypeT = TypeVar("_NonVoidDTypeT", bound=_NonVoidDType) _OneOrMany: TypeAlias = _T | Iterable[_T] _BuiltinSequence: TypeAlias = tuple[_T, ...] | list[_T] _NestedNames: TypeAlias = tuple[str | _NestedNames, ...] _NonVoid: TypeAlias = np.bool | np.number | np.character | np.datetime64 | np.timedelta64 | np.object_ _NonVoidDType: TypeAlias = np.dtype[_NonVoid] | np.dtypes.StringDType _JoinType: TypeAlias = Literal["inner", "outer", "leftouter"] ### def recursive_fill_fields(input: npt.NDArray[np.void], output: _VoidArrayT) -> _VoidArrayT: ... # def get_names(adtype: np.dtype[np.void]) -> _NestedNames: ... def get_names_flat(adtype: np.dtype[np.void]) -> tuple[str, ...]: ... # @overload def flatten_descr(ndtype: _NonVoidDTypeT) -> tuple[tuple[Literal[""], _NonVoidDTypeT]]: ... @overload def flatten_descr(ndtype: np.dtype[np.void]) -> tuple[tuple[str, np.dtype]]: ... # def get_fieldstructure( adtype: np.dtype[np.void], lastname: str | None = None, parents: dict[str, list[str]] | None = None, ) -> dict[str, list[str]]: ... # @overload def merge_arrays( seqarrays: Sequence[np.ndarray[_ShapeT, np.dtype]] | np.ndarray[_ShapeT, np.dtype], fill_value: float = -1, flatten: bool = False, usemask: bool = False, asrecarray: bool = False, ) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... @overload def merge_arrays( seqarrays: Sequence[npt.ArrayLike] | np.void, fill_value: float = -1, flatten: bool = False, usemask: bool = False, asrecarray: bool = False, ) -> np.recarray[_AnyShape, np.dtype[np.void]]: ... # @overload def drop_fields( base: np.ndarray[_ShapeT, np.dtype[np.void]], drop_names: str | Iterable[str], usemask: bool = True, asrecarray: Literal[False] = False, ) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... @overload def drop_fields( base: np.ndarray[_ShapeT, np.dtype[np.void]], drop_names: str | Iterable[str], usemask: bool, asrecarray: Literal[True], ) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... @overload def drop_fields( base: np.ndarray[_ShapeT, np.dtype[np.void]], drop_names: str | Iterable[str], usemask: bool = True, *, asrecarray: Literal[True], ) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... # @overload def rename_fields( base: MaskedRecords[_ShapeT, np.dtype[np.void]], namemapper: Mapping[str, str], ) -> MaskedRecords[_ShapeT, np.dtype[np.void]]: ... @overload def rename_fields( base: np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], namemapper: Mapping[str, str], ) -> np.ma.MaskedArray[_ShapeT, np.dtype[np.void]]: ... @overload def rename_fields( base: np.recarray[_ShapeT, np.dtype[np.void]], namemapper: Mapping[str, str], ) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... @overload def rename_fields( base: np.ndarray[_ShapeT, np.dtype[np.void]], namemapper: Mapping[str, str], ) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... # @overload def append_fields( base: np.ndarray[_ShapeT, np.dtype[np.void]], names: _OneOrMany[str], data: _OneOrMany[npt.NDArray[Any]], dtypes: _BuiltinSequence[np.dtype] | None, fill_value: int, usemask: Literal[False], asrecarray: Literal[False] = False, ) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... @overload def append_fields( base: np.ndarray[_ShapeT, np.dtype[np.void]], names: _OneOrMany[str], data: _OneOrMany[npt.NDArray[Any]], dtypes: _BuiltinSequence[np.dtype] | None = None, fill_value: int = -1, *, usemask: Literal[False], asrecarray: Literal[False] = False, ) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... @overload def append_fields( base: np.ndarray[_ShapeT, np.dtype[np.void]], names: _OneOrMany[str], data: _OneOrMany[npt.NDArray[Any]], dtypes: _BuiltinSequence[np.dtype] | None, fill_value: int, usemask: Literal[False], asrecarray: Literal[True], ) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... @overload def append_fields( base: np.ndarray[_ShapeT, np.dtype[np.void]], names: _OneOrMany[str], data: _OneOrMany[npt.NDArray[Any]], dtypes: _BuiltinSequence[np.dtype] | None = None, fill_value: int = -1, *, usemask: Literal[False], asrecarray: Literal[True], ) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... @overload def append_fields( base: np.ndarray[_ShapeT, np.dtype[np.void]], names: _OneOrMany[str], data: _OneOrMany[npt.NDArray[Any]], dtypes: _BuiltinSequence[np.dtype] | None = None, fill_value: int = -1, usemask: Literal[True] = True, asrecarray: Literal[False] = False, ) -> np.ma.MaskedArray[_ShapeT, np.dtype[np.void]]: ... @overload def append_fields( base: np.ndarray[_ShapeT, np.dtype[np.void]], names: _OneOrMany[str], data: _OneOrMany[npt.NDArray[Any]], dtypes: _BuiltinSequence[np.dtype] | None, fill_value: int, usemask: Literal[True], asrecarray: Literal[True], ) -> MaskedRecords[_ShapeT, np.dtype[np.void]]: ... @overload def append_fields( base: np.ndarray[_ShapeT, np.dtype[np.void]], names: _OneOrMany[str], data: _OneOrMany[npt.NDArray[Any]], dtypes: _BuiltinSequence[np.dtype] | None = None, fill_value: int = -1, usemask: Literal[True] = True, *, asrecarray: Literal[True], ) -> MaskedRecords[_ShapeT, np.dtype[np.void]]: ... # def rec_drop_fields( base: np.ndarray[_ShapeT, np.dtype[np.void]], drop_names: str | Iterable[str], ) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... # def rec_append_fields( base: np.ndarray[_ShapeT, np.dtype[np.void]], names: _OneOrMany[str], data: _OneOrMany[npt.NDArray[Any]], dtypes: _BuiltinSequence[np.dtype] | None = None, ) -> np.ma.MaskedArray[_ShapeT, np.dtype[np.void]]: ... # TODO(jorenham): Stop passing `void` directly once structured dtypes are implemented, # e.g. using a `TypeVar` with constraints. # https://github.com/numpy/numtype/issues/92 @overload def repack_fields(a: _DTypeT, align: bool = False, recurse: bool = False) -> _DTypeT: ... @overload def repack_fields(a: _ScalarT, align: bool = False, recurse: bool = False) -> _ScalarT: ... @overload def repack_fields(a: _ArrayT, align: bool = False, recurse: bool = False) -> _ArrayT: ... # TODO(jorenham): Attempt shape-typing (return type has ndim == arr.ndim + 1) @overload def structured_to_unstructured( arr: npt.NDArray[np.void], dtype: _DTypeLike[_ScalarT], copy: bool = False, casting: np._CastingKind = "unsafe", ) -> npt.NDArray[_ScalarT]: ... @overload def structured_to_unstructured( arr: npt.NDArray[np.void], dtype: npt.DTypeLike | None = None, copy: bool = False, casting: np._CastingKind = "unsafe", ) -> npt.NDArray[Any]: ... # @overload def unstructured_to_structured( arr: npt.NDArray[Any], dtype: npt.DTypeLike, names: None = None, align: bool = False, copy: bool = False, casting: str = "unsafe", ) -> npt.NDArray[np.void]: ... @overload def unstructured_to_structured( arr: npt.NDArray[Any], dtype: None, names: _OneOrMany[str], align: bool = False, copy: bool = False, casting: str = "unsafe", ) -> npt.NDArray[np.void]: ... # def apply_along_fields( func: Callable[[np.ndarray[_ShapeT, Any]], npt.NDArray[Any]], arr: np.ndarray[_ShapeT, np.dtype[np.void]], ) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... # def assign_fields_by_name(dst: npt.NDArray[np.void], src: npt.NDArray[np.void], zero_unassigned: bool = True) -> None: ... # def require_fields( array: np.ndarray[_ShapeT, np.dtype[np.void]], required_dtype: _DTypeLikeVoid, ) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... # TODO(jorenham): Attempt shape-typing @overload def stack_arrays( arrays: _ArrayT, defaults: Mapping[str, object] | None = None, usemask: bool = True, asrecarray: bool = False, autoconvert: bool = False, ) -> _ArrayT: ... @overload def stack_arrays( arrays: Sequence[npt.NDArray[Any]], defaults: Mapping[str, Incomplete] | None, usemask: Literal[False], asrecarray: Literal[False] = False, autoconvert: bool = False, ) -> npt.NDArray[np.void]: ... @overload def stack_arrays( arrays: Sequence[npt.NDArray[Any]], defaults: Mapping[str, Incomplete] | None = None, *, usemask: Literal[False], asrecarray: Literal[False] = False, autoconvert: bool = False, ) -> npt.NDArray[np.void]: ... @overload def stack_arrays( arrays: Sequence[npt.NDArray[Any]], defaults: Mapping[str, Incomplete] | None = None, *, usemask: Literal[False], asrecarray: Literal[True], autoconvert: bool = False, ) -> np.recarray[_AnyShape, np.dtype[np.void]]: ... @overload def stack_arrays( arrays: Sequence[npt.NDArray[Any]], defaults: Mapping[str, Incomplete] | None = None, usemask: Literal[True] = True, asrecarray: Literal[False] = False, autoconvert: bool = False, ) -> np.ma.MaskedArray[_AnyShape, np.dtype[np.void]]: ... @overload def stack_arrays( arrays: Sequence[npt.NDArray[Any]], defaults: Mapping[str, Incomplete] | None, usemask: Literal[True], asrecarray: Literal[True], autoconvert: bool = False, ) -> MaskedRecords[_AnyShape, np.dtype[np.void]]: ... @overload def stack_arrays( arrays: Sequence[npt.NDArray[Any]], defaults: Mapping[str, Incomplete] | None = None, usemask: Literal[True] = True, *, asrecarray: Literal[True], autoconvert: bool = False, ) -> MaskedRecords[_AnyShape, np.dtype[np.void]]: ... # @overload def find_duplicates( a: np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], key: str | None = None, ignoremask: bool = True, return_index: Literal[False] = False, ) -> np.ma.MaskedArray[_ShapeT, np.dtype[np.void]]: ... @overload def find_duplicates( a: np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], key: str | None, ignoremask: bool, return_index: Literal[True], ) -> tuple[np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], np.ndarray[_ShapeT, np.dtype[np.int_]]]: ... @overload def find_duplicates( a: np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], key: str | None = None, ignoremask: bool = True, *, return_index: Literal[True], ) -> tuple[np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], np.ndarray[_ShapeT, np.dtype[np.int_]]]: ... # @overload def join_by( key: str | Sequence[str], r1: npt.NDArray[np.void], r2: npt.NDArray[np.void], jointype: _JoinType = "inner", r1postfix: str = "1", r2postfix: str = "2", defaults: Mapping[str, object] | None = None, *, usemask: Literal[False], asrecarray: Literal[False] = False, ) -> np.ndarray[tuple[int], np.dtype[np.void]]: ... @overload def join_by( key: str | Sequence[str], r1: npt.NDArray[np.void], r2: npt.NDArray[np.void], jointype: _JoinType = "inner", r1postfix: str = "1", r2postfix: str = "2", defaults: Mapping[str, object] | None = None, *, usemask: Literal[False], asrecarray: Literal[True], ) -> np.recarray[tuple[int], np.dtype[np.void]]: ... @overload def join_by( key: str | Sequence[str], r1: npt.NDArray[np.void], r2: npt.NDArray[np.void], jointype: _JoinType = "inner", r1postfix: str = "1", r2postfix: str = "2", defaults: Mapping[str, object] | None = None, usemask: Literal[True] = True, asrecarray: Literal[False] = False, ) -> np.ma.MaskedArray[tuple[int], np.dtype[np.void]]: ... @overload def join_by( key: str | Sequence[str], r1: npt.NDArray[np.void], r2: npt.NDArray[np.void], jointype: _JoinType = "inner", r1postfix: str = "1", r2postfix: str = "2", defaults: Mapping[str, object] | None = None, usemask: Literal[True] = True, *, asrecarray: Literal[True], ) -> MaskedRecords[tuple[int], np.dtype[np.void]]: ... # def rec_join( key: str | Sequence[str], r1: npt.NDArray[np.void], r2: npt.NDArray[np.void], jointype: _JoinType = "inner", r1postfix: str = "1", r2postfix: str = "2", defaults: Mapping[str, object] | None = None, ) -> np.recarray[tuple[int], np.dtype[np.void]]: ...