import torch import torch.nn as nn import torch.nn.functional as F class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels, mid_channels=None): super().__init__() if not mid_channels: mid_channels = out_channels self.double_conv = nn.Sequential( nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1), nn.BatchNorm2d(mid_channels), nn.ReLU(inplace=True), nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), ) def forward(self, x): return self.double_conv(x) class Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential(nn.MaxPool2d(2), DoubleConv(in_channels, out_channels)) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels, bilinear=True): super().__init__() # if bilinear, use the normal convolutions to reduce the number of channels if bilinear: self.up = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True) self.conv = DoubleConv(in_channels, out_channels, in_channels // 2) else: self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) # input is CHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) # if you have padding issues, see # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd x = torch.cat([x2, x1], dim=1) return self.conv(x) class OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(OutConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): return self.conv(x) class UNet(nn.Module): # https://github.com/milesial/Pytorch-UNet/tree/master/unet def __init__(self, n_channels, n_classes, bilinear=True): super(UNet, self).__init__() self.n_channels = n_channels self.n_classes = n_classes self.bilinear = bilinear self.inc = DoubleConv(n_channels, 64) self.down1 = Down(64, 128) self.down2 = Down(128, 256) self.down3 = Down(256, 512) factor = 2 if bilinear else 1 self.down4 = Down(512, 1024 // factor) self.up1 = Up(1024, 512 // factor, bilinear) self.up2 = Up(512, 256 // factor, bilinear) self.up3 = Up(256, 128 // factor, bilinear) self.up4 = Up(128, 64, bilinear) self.outc = OutConv(64, n_classes) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) logits = self.outc(x) return logits def encode(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) feats = [x1, x2, x3, x4, x5] return feats def decode(self, feats): x1, x2, x3, x4, x5 = feats x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) logits = self.outc(x) return logits class UNetEncoder(nn.Module): def __init__(self, n_channels, bilinear=True, base_feat_channels=64): super(UNetEncoder, self).__init__() self.n_channels = n_channels self.bilinear = bilinear bfc = base_feat_channels self.base_feat_channels = base_feat_channels self.inc = DoubleConv(n_channels, bfc) self.down1 = Down(bfc, bfc * 2) self.down2 = Down(bfc * 2, bfc * 4) self.down3 = Down(bfc * 4, bfc * 8) factor = 2 if bilinear else 1 self.down4 = Down(bfc * 8, (bfc * 16) // factor) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) feats = [x1, x2, x3, x4, x5] return feats class UNetDecoder(nn.Module): def __init__(self, n_classes, bilinear=True, channel_factor=1, base_feat_channels=64): super(UNetDecoder, self).__init__() self.n_classes = n_classes self.bilinear = bilinear cf = channel_factor bfc = base_feat_channels self.base_feat_channels = base_feat_channels factor = 2 if bilinear else 1 self.up1 = Up((bfc * 16) * cf, (bfc * 8) // factor, bilinear) self.up2 = Up((bfc * 8) // factor * (cf + 1), (bfc * 4) // factor, bilinear) self.up3 = Up((bfc * 4) // factor * (cf + 1), (bfc * 2) // factor, bilinear) self.up4 = Up((bfc * 2) // factor * (cf + 1), bfc, bilinear) self.outc = OutConv(bfc, n_classes) def forward(self, feats): x1, x2, x3, x4, x5 = feats x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) logits = self.outc(x) return logits def get_output_feats(self, feats): x1, x2, x3, x4, x5 = feats x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) return x