Acta Crystallogr Sect E Struct Rep OnlineActa Cryst. EActa Crystallographica Section E: Structure Reports Online1600-5368International Union of Crystallography212018912960860rk207310.1107/S1600536808003012ACSEBHS1600536808003012Organic Papers8-Hydr­oxy-8-phenyl-2,3,7,8-tetra­hydro-6H-1,4-dioxino[2,3-f]isoindol-6-oneC16H13NO4TafeenkoViktor A.aAslanovLeonid A.a*KhasanovMahmud I.aMochalovSergei S.aChemistry Department, Moscow State University, 119991 Moscow, Russian FederationCorrespondence e-mail: aslanov@struct.chem.msu.ru01320080622008062200864Pt 3e080300o548o548291220072812008© Tafeenko et al. 20082008This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.A full version of this article is available from Crystallography Journals Online.

In the title compound, C16H13NO4, the indole system is essentially planar, whereas the dioxane ring adopts a twist conformation. The mol­ecules are linked into chains by —O— H⋯O=C— hydrogen bonds and these chains are linked into rods by means of N—H⋯O hydrogen bonds. Exept for weak C—H⋯O inter­actions between the rods, no other inter­molecular contacts of inter­est are present.

Related literature

For details of the appropriate nitrile hydrolysis, see: Moorthy & Singhal (2005).

Experimental<sec id="sec2.1.1"><title>Crystal data

C16H13NO4

M r = 283.27

Monoclinic,

a = 8.6001 (17) Å

b = 27.005 (5) Å

c = 5.7221 (5) Å

β = 92.602 (10)°

V = 1327.6 (4) Å3

Z = 4

Cu Kα radiation

μ = 0.85 mm−1

T = 291 (2) K

0.08 × 0.06 × 0.04 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Absorption correction: none

2892 measured reflections

2653 independent reflections

1784 reflections with I > 2σ(I)

R int = 0.025

2 standard reflections frequency: 120 min intensity decay: none

Refinement

R[F 2 > 2σ(F 2)] = 0.054

wR(F 2) = 0.147

S = 1.05

2653 reflections

192 parameters

H-atom parameters constrained

Δρmax = 0.23 e Å−3

Δρmin = −0.24 e Å−3

<p>Data collection: <italic>CAD-4 Software</italic> (Enraf–Nonius, 1989<xref ref-type="bibr" rid="bb2"> ▶</xref>); cell refinement: <italic>CAD-4 Software</italic>; data reduction: <italic>XCAD4</italic> (Harms & Wocadlo, 1995<xref ref-type="bibr" rid="bb4"> ▶</xref>); program(s) used to solve structure: <italic>SHELXS97</italic> (Sheldrick, 2008<xref ref-type="bibr" rid="bb6"> ▶</xref>); program(s) used to refine structure: <italic>SHELXL97</italic> (Sheldrick, 2008<xref ref-type="bibr" rid="bb6"> ▶</xref>); molecular graphics: <italic>DIAMOND</italic> (Brandenburg, 2000<xref ref-type="bibr" rid="bb1"> ▶</xref>); software used to prepare material for publication: <italic>WinGX</italic> (Farrugia, 1999<xref ref-type="bibr" rid="bb3"> ▶</xref>).</p></sec></sec><sec sec-type="supplementary-material"><title>Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003012/rk2073sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003012/rk2073Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2073).

supplementary crystallographic information Comment

To investigate mechanisms of intra- and intermolecular reactions of ortho-substituted benzenes we intended to synthesize novel ortho-acyl-substituted benzamides by hydrolysis (Moorthy & Singhal, 2005) of appropriate nitriles. In the case of hydrolysis of 7-benzoyl-2,3-dihydro-1,4-benzodioxine-6-carbonitrile (1) the compound 7-benzoyl-2,3-dihydro-1,4-benzodioxine-6-carboxamide (2) was expected to be produced (Fig. 1). Both the elemental analysis and mass spectroscopic data (M+ 283) of the compound we obtained, were in good agreement with structure (2), but 1H NMR data were not. Although 13 protons were identified in the 1H NMR spectrum, an expected signal for the NH2 group was absent. In addition, two single signals were detected in the 1H NMR spectrum, each corresponding to one proton of large difference in chemical shift (6.70 and 9.02). To determine the structure of the compound, we carried out an X-ray crystallographic analysis, which revealed that hydrolysis of (1), under the conditions specified by Moorthy & Singhal, did not produce the expected compound (2); instead the product was an isomer of compound (2), viz. 8-hydroxy-8-phenyl-2,3,7,8-tetrahydro-6H-[1,4]dioxino [2,3-f]isoindol-6-one, (3) (Fig. 1).

The dihedral angle between the planes defined by the atoms C5/C9/C10/C11/C12/C13 (plane 1) and C8/N7/C6/C10/C11 (plane 2) (Fig. 2) is 1.64 (9)°. The 6-membered dioxane ring adopts a twist conformation, with atoms C3 and C2 displaced out of plane 1 by 0.375 (4) and -0.273 (3) Å, respectively, compared with displacements of -0.012 (3) and 0.010 (3) Å for O4 and O1, respectively (Fig. 2). The torsion angle O2—C8—C14—C19 has rather a small value [16.7 (3)°]. This results from the intramolecular hydrogen bond C19—H19···O2. The packing motif, as shown in Fig.3, can be described as follows: molecules are linked by hydrogen bonds in head-to-tail fashion through oxy- and keto-groups to form infinite chains. The two adjacent chains are linked by N7—H7···O2ii hydrogen bonds, forming infinite rods running along the c axis. Neighbouring rods interact via centrosymmetric C5—H5···O4iii hydrogen bonds. Symmetry codes are listed in Table 1.

Experimental

A mixture of (1) (1 g, 0.0038 mol), concentrated sulfuric acid (1 ml) and trifluoroacetic acid (4 ml) was boiled under reflux. with stirring, for 5 h. The solution was then poured into ice-water (75 ml). The resulting white precipitate was filtered off, washed with water and recrystallized from acetone.

Refinement

The positions of the H atoms were determined from Fourier difference maps; they were then placed in calculated positions and allowed to ride on their parent atoms [C—H = 0.93–0.97 Å, O—H = 0.82 Å and N—H = 0.86 Å]. Uiso(H) = xUeq(parent atom), where x = 1.5 for attached O and 1.2 for C and N.

Figures

Hydrolysis of (1) did not produce the expected compound, (2) but rather an isomer of (2), viz. compound (3).

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates an intramolecular hydrogen bond.

The packing motif of the crystal structure. Hydrogen atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Symmetry codes: (i) x, y, z + 1; (ii) x, -y + 3/2, z - 1/2; (iii) -x, -y + 1, -z + 1.

Crystal data
C16H13NO4F000 = 592
Mr = 283.27Dx = 1.417 Mg m3
Monoclinic, P21/cMelting point = 485–486 K
Hall symbol: -P 2ybcCu Kα radiation λ = 1.54184 Å
a = 8.6001 (17) ÅCell parameters from 25 reflections
b = 27.005 (5) Åθ = 26–42º
c = 5.7221 (5) ŵ = 0.85 mm1
β = 92.602 (10)ºT = 291 (2) K
V = 1327.6 (4) Å3Prism, colorless
Z = 40.08 × 0.06 × 0.04 mm
Data collection
Enraf–Nonius CAD-4 diffractometerRint = 0.025
Radiation source: fine-focus sealed tubeθmax = 73.9º
Monochromator: graphiteθmin = 3.3º
T = 291(2) Kh = −10→10
Non–profiled ω scansk = 0→32
Absorption correction: nonel = 0→7
2892 measured reflections2 standard reflections
2653 independent reflections every 120 min
1784 reflections with I > 2σ(I) intensity decay: none
Refinement
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054  w = 1/[σ2(Fo2) + (0.061P)2 + 0.4104P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.147(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.23 e Å3
2653 reflectionsΔρmin = −0.24 e Å3
192 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (6)
Secondary atom site location: difference Fourier map
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å<sup>2</sup>)
xyzUiso*/Ueq
O10.3338 (2)0.50617 (7)1.1457 (3)0.0654 (5)
O20.3093 (2)0.70474 (6)0.9980 (3)0.0549 (5)
H20.23700.69061.05850.082*
O30.1250 (2)0.65694 (7)0.3005 (3)0.0568 (5)
O40.1351 (3)0.48070 (7)0.7532 (4)0.0737 (6)
N70.2877 (2)0.68919 (8)0.5922 (3)0.0498 (5)
H70.29720.71820.53210.060*
C20.2445 (4)0.46150 (12)1.1374 (6)0.0810 (10)
H2A0.14630.46711.21000.097*
H2B0.30030.43601.22590.097*
C30.2138 (5)0.44427 (12)0.8942 (7)0.0878 (11)
H3A0.31170.43610.82600.105*
H3B0.15100.41440.89560.105*
C50.1581 (3)0.56216 (9)0.6119 (4)0.0536 (6)
H50.09370.55410.48260.064*
C60.2011 (3)0.65333 (9)0.4881 (4)0.0467 (6)
C80.3642 (3)0.67510 (9)0.8154 (4)0.0455 (6)
C90.3521 (3)0.58711 (9)1.0021 (4)0.0498 (6)
H90.41630.59551.13130.060*
C100.2183 (3)0.60935 (9)0.6404 (4)0.0467 (6)
C110.3138 (3)0.62151 (9)0.8321 (4)0.0446 (5)
C120.1965 (3)0.52745 (10)0.7811 (5)0.0542 (6)
C130.2925 (3)0.53960 (9)0.9759 (4)0.0510 (6)
C140.5399 (3)0.68000 (9)0.8127 (4)0.0458 (6)
C150.6197 (3)0.66247 (10)0.6231 (4)0.0555 (6)
H150.56360.64990.49370.067*
C160.7790 (3)0.66338 (11)0.6228 (5)0.0645 (7)
H160.83010.65140.49460.077*
C170.8631 (4)0.68214 (12)0.8136 (5)0.0683 (8)
H170.97120.68290.81430.082*
C180.7876 (3)0.69959 (11)1.0011 (5)0.0678 (8)
H180.84490.71211.12970.081*
C190.6268 (3)0.69889 (10)1.0022 (4)0.0561 (7)
H190.57670.71121.13070.067*
Atomic displacement parameters (Å<sup>2</sup>)
U11U22U33U12U13U23
O10.0765 (13)0.0525 (11)0.0666 (12)−0.0020 (9)−0.0039 (10)0.0182 (9)
O20.0654 (12)0.0516 (10)0.0488 (10)−0.0046 (8)0.0138 (8)−0.0083 (8)
O30.0575 (11)0.0718 (12)0.0406 (9)−0.0020 (9)−0.0038 (8)0.0054 (8)
O40.0847 (15)0.0480 (11)0.0870 (15)−0.0136 (10)−0.0131 (12)0.0040 (10)
N70.0603 (13)0.0463 (11)0.0421 (10)−0.0032 (9)−0.0049 (9)0.0071 (9)
C20.097 (3)0.0529 (18)0.093 (2)−0.0106 (16)0.0003 (19)0.0230 (17)
C30.107 (3)0.0513 (18)0.104 (3)−0.0006 (18)−0.011 (2)0.0065 (18)
C50.0578 (15)0.0547 (15)0.0480 (13)−0.0073 (12)−0.0020 (11)−0.0051 (12)
C60.0464 (13)0.0567 (15)0.0371 (11)0.0029 (11)0.0021 (10)0.0008 (10)
C80.0575 (14)0.0446 (13)0.0343 (11)−0.0017 (11)−0.0001 (10)−0.0005 (9)
C90.0564 (14)0.0511 (14)0.0417 (12)−0.0030 (11)−0.0005 (10)0.0034 (11)
C100.0512 (13)0.0500 (14)0.0388 (11)−0.0035 (11)0.0017 (10)−0.0004 (10)
C110.0505 (13)0.0459 (13)0.0373 (12)−0.0014 (10)0.0022 (10)0.0010 (10)
C120.0608 (16)0.0454 (14)0.0565 (15)−0.0078 (12)0.0027 (12)−0.0041 (12)
C130.0556 (14)0.0469 (14)0.0506 (13)−0.0001 (11)0.0042 (11)0.0074 (11)
C140.0567 (14)0.0436 (13)0.0370 (11)−0.0025 (11)0.0011 (10)0.0021 (10)
C150.0610 (16)0.0649 (17)0.0407 (12)−0.0025 (13)0.0027 (11)−0.0039 (12)
C160.0606 (16)0.074 (2)0.0594 (17)0.0007 (14)0.0109 (13)−0.0030 (15)
C170.0570 (16)0.076 (2)0.0716 (19)−0.0002 (14)0.0011 (14)0.0022 (16)
C180.0635 (18)0.076 (2)0.0624 (17)−0.0039 (15)−0.0152 (14)−0.0050 (15)
C190.0672 (17)0.0599 (16)0.0404 (12)0.0001 (13)−0.0040 (11)−0.0032 (11)
Geometric parameters (Å, °)
O1—C131.362 (3)C8—C111.515 (3)
O1—C21.430 (4)C8—C141.518 (3)
O2—C81.415 (3)C9—C111.374 (3)
O2—H20.8200C9—C131.387 (3)
O3—C61.236 (3)C9—H90.9300
O4—C121.375 (3)C10—C111.380 (3)
O4—C31.424 (4)C12—C131.396 (3)
N7—C61.344 (3)C14—C191.386 (3)
N7—C81.460 (3)C14—C151.393 (3)
N7—H70.8600C15—C161.370 (4)
C2—C31.480 (5)C15—H150.9300
C2—H2A0.9700C16—C171.378 (4)
C2—H2B0.9700C16—H160.9300
C3—H3A0.9700C17—C181.363 (4)
C3—H3B0.9700C17—H170.9300
C5—C121.376 (4)C18—C191.384 (4)
C5—C101.382 (3)C18—H180.9300
C5—H50.9300C19—H190.9300
C6—C101.477 (3)
C13—O1—C2114.4 (2)C13—C9—H9120.9
C8—O2—H2109.5C11—C10—C5121.3 (2)
C12—O4—C3113.5 (2)C11—C10—C6108.5 (2)
C6—N7—C8114.7 (2)C5—C10—C6130.2 (2)
C6—N7—H7122.6C9—C11—C10121.1 (2)
C8—N7—H7122.6C9—C11—C8129.1 (2)
O1—C2—C3111.7 (3)C10—C11—C8109.8 (2)
O1—C2—H2A109.3O4—C12—C5117.7 (2)
C3—C2—H2A109.3O4—C12—C13121.2 (2)
O1—C2—H2B109.3C5—C12—C13121.0 (2)
C3—C2—H2B109.3O1—C13—C9116.9 (2)
H2A—C2—H2B107.9O1—C13—C12122.7 (2)
O4—C3—C2112.1 (3)C9—C13—C12120.4 (2)
O4—C3—H3A109.2C19—C14—C15117.8 (2)
C2—C3—H3A109.2C19—C14—C8121.7 (2)
O4—C3—H3B109.2C15—C14—C8120.3 (2)
C2—C3—H3B109.2C16—C15—C14121.5 (3)
H3A—C3—H3B107.9C16—C15—H15119.2
C12—C5—C10117.9 (2)C14—C15—H15119.2
C12—C5—H5121.0C15—C16—C17119.6 (3)
C10—C5—H5121.0C15—C16—H16120.2
O3—C6—N7126.1 (2)C17—C16—H16120.2
O3—C6—C10127.7 (2)C18—C17—C16119.9 (3)
N7—C6—C10106.23 (19)C18—C17—H17120.0
O2—C8—N7110.3 (2)C16—C17—H17120.0
O2—C8—C11112.82 (19)C17—C18—C19120.7 (3)
N7—C8—C11100.69 (18)C17—C18—H18119.7
O2—C8—C14108.89 (19)C19—C18—H18119.7
N7—C8—C14112.20 (19)C18—C19—C14120.4 (3)
C11—C8—C14111.8 (2)C18—C19—H19119.8
C11—C9—C13118.2 (2)C14—C19—H19119.8
C11—C9—H9120.9
C13—O1—C2—C340.4 (4)C3—O4—C12—C5162.9 (3)
C12—O4—C3—C245.2 (4)C3—O4—C12—C13−18.1 (4)
O1—C2—C3—O4−57.6 (4)C10—C5—C12—O4179.4 (2)
C8—N7—C6—O3179.2 (2)C10—C5—C12—C130.3 (4)
C8—N7—C6—C10−1.7 (3)C2—O1—C13—C9167.3 (3)
C6—N7—C8—O2−117.5 (2)C2—O1—C13—C12−13.5 (4)
C6—N7—C8—C111.8 (3)C11—C9—C13—O1179.3 (2)
C6—N7—C8—C14120.9 (2)C11—C9—C13—C120.1 (4)
C12—C5—C10—C11−0.1 (4)O4—C12—C13—O11.5 (4)
C12—C5—C10—C6178.4 (3)C5—C12—C13—O1−179.5 (2)
O3—C6—C10—C11179.9 (2)O4—C12—C13—C9−179.3 (2)
N7—C6—C10—C110.8 (3)C5—C12—C13—C9−0.4 (4)
O3—C6—C10—C51.3 (4)O2—C8—C14—C1916.7 (3)
N7—C6—C10—C5−177.8 (3)N7—C8—C14—C19139.1 (2)
C13—C9—C11—C100.2 (4)C11—C8—C14—C19−108.6 (3)
C13—C9—C11—C8−178.9 (2)O2—C8—C14—C15−167.4 (2)
C5—C10—C11—C9−0.2 (4)N7—C8—C14—C15−45.1 (3)
C6—C10—C11—C9−178.9 (2)C11—C8—C14—C1567.2 (3)
C5—C10—C11—C8179.0 (2)C19—C14—C15—C160.5 (4)
C6—C10—C11—C80.3 (3)C8—C14—C15—C16−175.6 (2)
O2—C8—C11—C9−64.5 (3)C14—C15—C16—C17−0.2 (4)
N7—C8—C11—C9178.0 (2)C15—C16—C17—C180.1 (5)
C14—C8—C11—C958.6 (3)C16—C17—C18—C19−0.3 (5)
O2—C8—C11—C10116.3 (2)C17—C18—C19—C140.5 (5)
N7—C8—C11—C10−1.2 (3)C15—C14—C19—C18−0.6 (4)
C14—C8—C11—C10−120.5 (2)C8—C14—C19—C18175.3 (2)
Hydrogen-bond geometry (Å, °)
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.952.725 (3)158
N7—H7···O2ii0.862.092.922 (3)161
C5—H5···O4iii0.932.523.404 (3)160
C19—H19···O20.932.402.734 (4)101

Symmetry codes: (i) x, y, z+1; (ii) x, −y+3/2, z−1/2; (iii) −x, −y+1, −z+1.

ReferencesBrandenburg, K. (2000). DIAMOND Release 2.1d. Crystal Impact GbR, Bonn, Germany.Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.Moorthy, J. N. & Singhal, N. (2005). J. Org. Chem.70, 1926–1929.Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Hydrogen-bond geometry (Å, °)
D—H⋯AD—HH⋯ADAD—H⋯A
O2—H2⋯O3i0.821.952.725 (3)158
N7—H7⋯O2ii0.862.092.922 (3)161
C5—H5⋯O4iii0.932.523.404 (3)160
C19—H19⋯O20.932.402.734 (4)101

Symmetry codes: (i) ; (ii) ; (iii) .