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ABSTRACT

InterPlanetary Filesystem (IPFS) is a permissionless set of peer-to-peer protocols. Its main goal is to
provide a distributed alternative to HTTP. However, IPFS entails substantial privacy risks, as content
requests and offerings are openly shared and not obscured. That means that no one within the IPFS
network is anonymous, nor can sensitive content be offered privately. We review scientific papers, talks
at IPFS conferences, and blog articles to give a thorough overview of privacy improvements for content
requests and offerings. Our results indicate that complete anonymity is impossible within the IPFS
network and that the most promising mitigations revolve around the privacy goal of plausible deniability.
However, future research could investigate incorporating anonymity networks, such as Tor, inside IPFS to
enable provider anonymity.

INTRODUCTION
In HTTP, clients use the location of a file to request it from a server. This approach has limitations when
distributing datasets of petabyte proportions or when versioning is needed. To combat these limitations,
technologies such as Git and BitTorrent have been developed.

Benet (2014) revisited the problem with a strong focus on decentralization. He proposed a universal
file system—the IPFS. IPFS is a Peer-to-Peer (P2P) network in which clients directly ask for content
using its unique self-validating Content Identifier (CID)—the file’s cryptographic hash (Benet, 2014).
Thus, clients will always verifiably get exactly the content they are asking for since the CID will change
if the file has been altered. This way, IPFS provides data integrity—a primary protection goal of the
CIA-triad framework (Samonas and Coss, 2014), which is widely used to develop security policies that
focus on confidentiality, integrity, and availability.

While solutions to also protect the confidentiality of the data exist and the system’s design inherently
grants availability, privacy is not an integral part of IPFS. In fact, the official documentation states that due
to its modular design, developers should take care of privacy themselves (IPFS Docs, 2023e). Moreover,
research on privacy methods tailored to IPFS is scarce (Daniel and Tschorsch, 2023), and commercial and
open-source solutions are hard to come by. However, privacy problems are plentiful when using IPFS
and include content privacy, client- and provider anonymity, and user tracking (Matt Ober, 2019; Tourani
et al., 2017; Chaabane et al., 2013). These problems are also concerning for current users1. IPFS has been
proposed as a viable solution for multi-party collaboration (Nizamuddin et al., 2019), scientific publishing
and peer review (Tenorio-Fornés et al., 2019), and social networking (Xu et al., 2018).
In this paper we aim to provide a comprehensive overview, comparison, and classification of the privacy
solutions available for IPFS. This review is intended for the researchers, privacy scholars, and developers
who are working with or studying IPFS and other decentralized storage protocols. It also targets security
and privacy professionals who seek to understand IPFS from a privacy-focused perspective and who may
contribute to the development of tools and protocols to mitigate privacy risks.

In detail, we investigate the following research questions:

• RQ1 What are the key privacy issues when using IPFS for a) users and b) providers?

• RQ2 Which solutions exist to address privacy issues for a) users and b) content providers?
1https://www.reddit.com/r/ipfs/comments/kpicby/
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Figure 1. Kademlia tree in the 3-bit keyspace

BACKGROUNDS
In this section, we present background information on IPFS, its data-exchange protocol Bitswap, HTTP
gateways, privacy, and finally, Private Information Retrieval (PIR).

IPFS
IPFS is a suit of P2P protocols intended to change the way data is stored and addressed. IPFS was
designed by Protocol Labs2 and is now maintained by IPShipyard3. The data is distributed over a P2P
network in which each node functions as both a client and a server, with each role bearing different privacy
challenges. This decentralized approach eliminates single points of failure and prevents censorship. If
a client wishes to fetch a file, they directly address it using its CID instead of its location. Files on
IPFS get split into blocks of 256 KB—a process called “chunking” (Carson Farmer, 2018). Each chunk
gets a separate CID, and all chunks are connected to a tree-like structure called the Merkle Directed
Acyclic Graph (DAG) (IPFS Docs, 2023d). The CID used to access the original file is, in fact, the
root CID of the respective Merkle DAG (IPFS Docs, 2022). A key property of the Merkle DAG is its
self-verifying structure. By changing one node (i.e., one block of the file) within the graph, all parent
nodes change—including the root—and, thus, the original file’s CID. Consequently, if the content of the
file changes, so would its hash and identifier. Therefore, nodes can verify each file’s integrity using CIDs.

The content is, however, not directly provided to the network. Nodes advertise that they host a
piece of content by writing a pointer to themselves on the Distributed Hash Table (DHT). In IPFS, the
DHT implementation is based on the Kademlia algorithm, which allows for efficient XOR metric-based
routing. A so-called provider record is a key-value pair that connects the pointer (the key) to the respective
file-hosting peers (values). This process is called pinning. Simply put, the CID is hashed again to obtain a
binary string representing the pointer. The resulting Kademlia tree can be pictured as a binary tree that
is used to lookup content along the shared prefixes using XOR-distances (see Fig. 1). With regards to
privacy, it is worth noting that only if the specific pointer (the CID) is known, a node can find out the
PeerID of a node providing this specific content by querying the DHT. By design, nodes cannot hide any
content they hold if they wish to participate in the IPFS network—a clear privacy problem. It is, however,
highly difficult to discover all content a peer is providing. From a privacy perspective, it is noteworthy
that the nodes making up the IPFS network can be enumerated (Henningsen et al., 2020a,b).

Another significant advantage of IPFS is the possibility for offline access once a file is in a node’s
cache. An important concept regarding pinning and the cache is the garbage collector. It regularly deletes
unpinned cached data (Politou et al., 2020). Pinning content ensures that it is not removed and is available
within IPFS. The more nodes pin the same content, the easier and faster other nodes can find it.

Additionally, clients who own a data center may use Protocol Labs’ incentive network, Filecoin (File-
coin Docs, 2023), to earn financial rewards for providing storage, proving the availability of files, and
sharing them. However, its use within IPFS is not mandatory, and other incentive structures are also
used (IPFS Docs, 2023b).

2https://protocol.ai/
3https://ipshipyard.com
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Bitswap
The Bitswap protocol handles all file exchange requests within the IPFS network (IPFS Docs, 2023a). A
file exchange is performed in three steps: (1) want lists, (2) discovery, and (3) transfer.

Nodes exchange and remember want lists of connected nodes. These lists contain all the CIDs of the
file chunks that together make out the content. Each time a node receives a new block, it forwards the
block if others want it.

During discovery, the requesting node sends out the root CID of wanted content to all connected peers.
If none of them have the root block, the DHT is used to find nodes that do. Now that providing nodes are
known, the individual wanted blocks are requested and transferred. Multiple nodes send different chunks
in order to speed up the process (Dirk McCormick and Edgar Lee, 2020). While the transfer of data is
encrypted (IPFS Docs, 2023e), it is not possible to hide which data a node requests and individual users’
data requests could be traced by passive monitoring of the network (Balduf et al., 2022).

HTTP Gateways
Clients not supporting IPFS can use gateways to access IPFS via HTTP. Gateways run IPFS themselves
and allow HTTP requests for IPFS-content retrieval (IPFS Docs, 2023c). If the gateway does not have the
wanted file in its own cache, the request is forwarded as described in the previous section. The reliability
of IPFS gateways does vary, and sometimes content cannot be retrieved (Daniel Norman, 2022). Using a
gateway prevents the user’s IP from getting linked to the requested content; however, the gateway used
can still monitor and track the activity. Thus, trust is only shifted from the IPFS network to the gateway
provider.

Privacy
A commonly accepted notion of privacy has been defined by Westin (1967): “the claim of individuals
[. . . ] to determine for themselves when, how, and to what extent information about them is communicated
to others.” This means that people should be able to determine for themselves what information to reveal
to whom. In the context of IPFS, this is often referred to as PIR (see next section). Since IPFS uses a
public P2P network, ensuring privacy would mean that a peer is enabled to access and offer data privately,
i.e., without anyone being able to monitor requests and content transfers.

To achieve privacy, users, developers, and big companies employ Privacy-Enhancing Technologies
(PETs). PETs are one or multiple methods used to preserve an individual’s privacy (Gan et al., 2019).
Amongst policy and filtering processes, these methods include anonymization and encryption (Shen and
Pearson, 2011). Common PETs include anti-tracking technologies, anonymization tools, data perturbation
mechanisms, and secure communication protocols using encryption (Kaaniche et al., 2020). Examples of
privacy violations in IPFS include activity tracking, profiling, and censoring.

Private Information Retrieval
PIR allows fetching content from multiple untrusted servers without the servers learning which content
was accessed. There are two variants of PIR: computational (CPIR) and information-theoretic (IT-PIR).

IT-PIR is used more commonly due to its lower computational complexity, but depends on multiple
non-colluding servers. Servers holding a shared database are presented different, seemingly random query
vectors from a client. The client then reconstructs the desired item from the noisy response data sets. If
the servers choose to share the random vectors with each other, they are able to calculate the desired item.

CPIR on the other hand, relies on computational overhead and, therefore, does not depend on non-
colluding servers. In fact, CPIR is computed on a single server. The CPIR scheme of Kushilevitz
and Ostrovsky (1997) leverages number-theoretic properties to ensure retrieval privacy, i.e., a modulus
N based on two large prime numbers and a set of seemingly random numbers — random quadratic
residues and a single quadratic non-residue. The server calculates a response based on these seemingly
random numbers. The desired data is then extracted, with the help of the quadratic non-residue, as
the client knows the factorization of N. For perfect privacy, the response time in CPIR needs to be
linear to the database size, becoming the main disadvantage of this original CPIR approach. By now,
many Homomorphic Encryption-based solutions exist4 that have replaced the original design. Moreover,
solutions with sub-linear performance were introduced that leverage batching (Angel et al., 2018) or
database encryption5.

4https://blintzbase.com/posts/pir-and-fhe-from-scratch/
5https://spiralwiki.com
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SURVEY METHODOLOGY
To answer the research questions laid out in the introduction, we first retrieve scientific papers using
Google Scholar and projects (commercial and open-source) using a regular web search engine, i.e., we
used a combination of the keywords IPFS, privacy, anonymity, and plausible deniability. We consider
sources relevant if they address privacy problems that are specific and inherent to IPFS.

After identifying papers and other sources, we proceed by checking all references within those papers
(backward search), evaluate the relevance of papers citing the original paper (snowballing by using
the “cited by” option on Google Scholar), and checking all published papers by the respective author.
Regarding the commercial and open-source projects that (promise to) provide a solution to IPFS privacy
issues, we use various search queries containing the same keywords and check pertinent forums, such
as Stack Overflow6, Reddit7, and IPFS Boards8. Since most IPFS efforts and ideas are not published
but only discussed at meetings, such as IPFS Camp9 and IPFS þing10, we also search the IPFS YouTube
channel11 to find further presentations and talks on the subject.

RESULTS
In this section, we first present IPFS privacy issues, thus answering RQ1. Next, we answer RQ2 by
elaborating our findings to mitigate these issues, classified by users and providers. Note that these results
are discussed in the succeeding section.

Privacy Issues
In RQ1, we ask: What are the key privacy issues when using IPFS for a) users and b) providers? The
notion of privacy introduced in the previous section can not be achieved following the Bitswap protocol. If
IPFS users want to fetch content, they have to broadcast the request to all connected nodes using Bitswap,
and in a DHT search, the request is propagated to numerous other nodes. Hence, users cannot control
who is able to monitor their request for information. While content at transit is encrypted (IPFS Docs,
2023e), IPFS was not created with privacy in mind. It was designed to be a public P2P network that
relies on nodes publishing the content they want to retrieve and the content they possess so that other
nodes can find it. This is because content is addressed via its name and not via its location (Matt Ober,
2019). Projects such as Veilid12 aim for anonymous content-based networking by combining IPFS and Tor
concepts but sacrifice interoperability with IPFS. During content retrieval, nodes broadcast their unique
identifiers (PeerID). It is possible to connect that PeerID to a node’s IP address via a DHT lookup (IPFS
Docs, 2023e); therefore, anonymity for both users and content providers is not preserved. Moreover,
the requested CID is also publicly available, meaning that not only does an attacker know who wants
to fetch something but also what the peer wants (IPFS Docs, 2023e). Furthermore, the PeerID usually
does not change, which allows tracking a user by collecting multiple requests. It is possible to provide
encrypted content when specific readers have a decryption key, but this way, the content is no longer
publicly consumable, and its confidentiality depends on the secrecy of the key.

Balduf et al. (2022) classified privacy threats into three attacks:

1. Identification: Find out which PeerIDs are interested in which CIDs via content monitoring.

2. Tracking: Since content requests are broadcast to all connected peers, establishing and keeping a
connection to the victim is sufficient to track all its requests.

3. Past interests: Abusing the fact that nodes cache previously requested content, an attacker can test
whether the victim has recently requested a specific CID by demanding it themselves from the user.

Monitoring projects confirm such attacks’ feasibility (Balduf et al., 2022).

6https://stackoverflow.com/
7https://www.reddit.com/r/ipfs/
8https://discuss.ipfs.tech
9https://2022.ipfs.camp/

10https://2023.ipfs-thing.io/
11https://www.youtube.com/@IPFSbot
12https://www.veilid.com

4/12



Solution Reference(s) Privacy Goal Available
Tor (IPFS, 2020; IPFS Primer, 2020a,b) Anonymity ✔
I2P (RTrade Technologies Ltd, 2019; Mike Chu, 2023) Anonymity ✔
Content encryption (IPFS Docs, 2023e) Content confidentiality ✔
DHTPIR (Mazmudar et al., 2021) Plausible deniability
Double Hashing/
Reader Privacy (Guillaume Michel, 2022) Plausible deniability

Bloom-Swap (Daniel and Tschorsch, 2023) Content anonymity
Content Erasure (Politou et al., 2020) Right to erasure

Table 1. Solutions for reader privacy, their respective references, the primary privacy goal covered, and
whether they are available, i.e., ready to use as of today.

To summarize and answer RQ1: The anonymity of users and content providers is not preserved,
which poses a serious privacy violation. Moreover, a standard implementation of the protocol allows
the tracking of interactions, including the tracking of requested and stored content.

Reader Privacy
In this section, we answer RQ2a: Which solutions exist to address privacy issues for users? This problem
is often referred to as reader privacy, as opposed to writer/provider privacy, which is addressed in the
succeeding section. In addition to disclosing privacy risks inherent in IPFS (see previous section), Balduf
et al. (2022) also proposed some high-level mitigation tactics:

1. Changing the PeerID more frequently

2. Anonymizing the node’s IP

3. Reducing the amount of allowed connections

4. Limiting the lookup space to trusted nodes

5. Using salted hashes of CIDs to prevent the linking of the CID to the respective content if the CID is
unknown

6. Adding noise to CID requests to provide plausible deniability

None of these techniques has been discussed in detail; however, many of them have been picked up by
other researchers.

Currently, researchers are looking into ways to incorporate Tor, Nym13, Freenet14, and Signal15

into the IPFS ecosystem in order to facilitate privacy-preserving communication (Protocol Labs, 2023).
However, none of these projects are finished or have published works in progress. The list of currently
supported projects can be found online16 and mainly focus on PIR. Methods and projects presented in this
section are categorized by their primary targeted privacy goal (see Tab. 1).

Anonymity
Tor with IPFS One of the most widely used PETs is the Tor network (Dingledine et al., 2004). It has
been developed to preserve an individual’s privacy while browsing the web. If that individual’s client
accesses a website via Tor, it is not possible to link that client to their actual IP address, thus preserving
anonymity. This is achieved by routing the HTTP request through the Tor network before forwarding it to
the actual server. The privacy provided by Tor is strong, and even the NSA has to admit that it “will never
be able to de-anonymize all Tor users all the time” (David Murphy, 2013). Recent developments also
lowered Tor’s latency, although, for design reasons alone, it still lags behind conventional web browsing.
The simplest way to use Tor in combination with IPFS is to access an HTTP gateway like
ipfs.io/ipfs/[CID] with the Tor browser and replace [CID] with the actually desired CID. How-
ever, users can only download content this way.

13https://nymtech.net/
14https://www.hyphanet.org/index.html
15https://signal.org/
16https://grants.protocol.ai/blog/2023/private-retrieval-grant-2023-roundup/
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A talk at the IPFS þing 2022 highlights some problems with incorporating Tor-like anonymization
services into IPFS17:

1. Circuit selection, as nodes must not collude

2. Network structure, as the current P2P architecture would not provide dedicated entry and exit nodes

3. Changes to the IPFS software would be severe

4. Latency would be an issue due to the limited amount of users willing to participate, which could be
alleviated with incentive structures

The official documentation suggests using a certain IPFS gateway on the Tor network (IPFS Primer,
2020a); however, this information seems to be deprecated; as of December 2023, the provided gateway
does not work. The provided alternative is to run IPFS over Tor transport, which allows nodes to
communicate over the Tor network, thus providing node anonymity (IPFS Primer, 2020b). However, this
concept was stuck in the experimental phase and did not materialize (IPFS, 2020). Referring to the current
list of projects working on PIR, none of them mention Tor, which suggests that accessing HTTP gateways
via Tor is the only viable solution to combine Tor with IPFS.

I2P with IPFS Likewise to Tor, the Invisible Internet Project (I2P) has been introduced in order to
preserve the users’ anonymity while browsing the internet at a reasonable latency (Schimmer, 2009).
Compared to Tor, the user base is much smaller, and the majority of it is in Europe (Mike Chu, 2023).

Similar to using a gateway to access IPFS via Tor, it is equally possible to access IPFS via I2P. Once
installed, I2P can be used just like Tor to access IPFS HTTP gateways. One company that offers IPFS
access over I2P is RTrade, which runs Temporal18—an open-source data storage API—and maintained an
I2P gateway project (RTrade Technologies Ltd, 2019) (the last commit was in 2018). Using Temporal to
access an HTTP gateway via I2P works by installing I2P and then accessing their gateway through I2P.
This way, the user’s anonymity is preserved, and access, but not file upload within IPFS, is possible.

Achieving anonymity for all IPFS network interactions is currently not possible. The only way users
have to not link their IP addresses to their data requests, is to access the IPFS network from outside,
i.e, via gateways, and hide their IP using either Tor or I2P.

Plausible Deniability
Double Hashing/Reader Privacy The name double hashing stems from the fact that content is at the
moment hashed twice already. Once to get the CID and the second time to get the bit-string representation
that is used for the lookup. Since the bit-string representation directly links to the CID, thereby revealing
the content a node is interested in, the idea is to find a bit-representation of the CID that does not directly
link to the original CID, thus hiding the content requested from prying eyes. This idea has been presented
on multiple occasions (IPFS Camp 202219, IPFS þing 202220) and is specified by Guillaume Michel
(2022). It is worth noting that the name has since been changed to DHT reader privacy.

The goal of the presented approach is to achieve k-anonymity and plausible deniability. k-anonymity
means that the quasi-identifiers of an anonymized record within a database are indistinguishable from
k− 1 other records within the same database (Sweeney, 2002). In the context of IPFS, however, this
translates to hiding the actual CID a peer is trying to fetch within k − 1 other CIDs, thus providing
plausible deniability. Referring to Fig. 2, if we assume the bit-string 001 points to a certain CID, a node
would request all CIDs with the prefix 00. The DHT server would now send the peers who have both
bit-strings 000 and 001, which would yield in 2-anonymity. In practice, these bit-strings would be much
larger. Depending on where the prefix of the bit-string is cut off, this level of privacy is provided at the
expense of network overhead. This overhead arises because instead of only providing the pointer to the
specific content, all pointers beginning with the respective prefix are sent over the network.

While providing plausible deniability to the reader, it jeopardizes writer privacy. To recall, the provider
record’s key is the CID, which means that before double hashing/reader privacy, a node can only see

17https://www.youtube.com/watch?v=f85U8b5g-Ks
18https://temporal.cloud
19https://www.youtube.com/watch?v=VBlx-VvIZqU
20https://www.youtube.com/watch?v=ZPIDU1-JnVc
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Figure 2. Example of double hashing/reader privacy providing k = 2-anonymity

PeerIDs that store known CIDs. This changes if providers send their pointers to the requesting node, as
they include CIDs that were not previously known, which exposes more PeerIDs and violates provider
privacy for the benefit of reader privacy.

To mitigate that, the proposed protocol includes symmetric and asymmetric encryption to preserve
privacy. Content providers encrypt their PeerID using an encryption algorithm that includes the respective
CID, exposing only the PeerID to nodes that know the CID. To further ensure that provider records cannot
be faked, the encrypted provider record is signed so that the DHT server can verify their origin. Double
Hashing/Reader Privacy is already defined in spec IPIP-373 (Guillaume Michel, 2022) but, as of today, is
not yet integrated into IPFS.

DHTPIR Miti Mazmudar’s talk21 outlines the concept of DHTPIR (Mazmudar et al., 2021). The privacy
goal of this protocol is to hide content-retrieval queries from intermediate nodes in order to encourage
more clients to use IPFS for sensitive content in countries in which this content is censored. The main
goal is to circumvent malicious nodes that want to censor content, differentiating the approach from
double hashing/reader privacy. Consequently, the underlying threat model is twofold: (1) nodes that (are
coerced to) log access to certain content and forward it to censors and (2) malicious nodes that either
drop requests (eclipse attack (Prünster et al., 2022)) or forward them to the wrong node. The DHTPIR
protocol employs the IT-PIR scheme, which requires at least two nodes that are not malicious. In order
to fulfill this assumption, DHT nodes are grouped together in so-called quorums, such that most nodes
in each group are benign (Sen and Freedman, 2012). Fig. 3 illustrates this. Several nodes are grouped
together in quorums Q1,Q2, and Q3. The assumed data flow is that node p wants to fetch content from
Q3, in which all nodes have a common DHT from which the content is fetched, i.e., sending seemingly
random vectors to each node within the quorum that XORed together, allows p to retrieve the desired
content. Referencing Fig. 3, if node p were to directly query the malicious node r, it could forward p’s
request to another malicious node, thereby tampering with the result or simply dropping the request and
censoring the desired content. By using quorums, p does not only ask r but all nodes within Q2.

A concept called threshold signatures is applied, such that a request reaching the quorum is only
forwarded if a certain threshold of benign nodes’ signatures is reached (Young et al., 2010). Note that all
nodes within a quorum hold the same files.

The privacy-preserving file retrieval algorithm is then carried out using Perfect Hash Function
(PHF) (Botelho et al., 2013), which is used to map document keywords to their respective indices. In
the context of server nodes in IPFS the PHF is used to compute the content’s index from its CID. The
algorithm works as follows:

1. Identify the index of the file in the target quorum’s database using PHF

2. If there are s number of servers within the quorum, compute s vectors which combined result in the
desired content

3. Send one vector to each node within the quorum and obtain the PIR responses

21https://www.youtube.com/watch?v=1cd4t9OL0iM
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Figure 3. Simplified version of the QP protocol (Mazmudar et al., 2021). Quorums are illustrated by
blue ovals, benign nodes are green, and malicious nodes are red. Node p wants to fetch content that is
stored in Q3 with no direct connection. 1. Q1 requests Q2’s routing table including Q3. 2. Q2 returns Q3’s
routing entry as the malicious node r is in the minority and can not “convince” the others to drop the
request. 3. Node p queries Q3 via IT-PIR for the desired content that 4. is sent to p.

4. Reconstruct the file using these responses

Submission for integration of DHTPIR into IPFS has been proposed but has not yet been carried out.

Plausible deniability is the most straightforward privacy goal that can be achieved within IPFS. The
main idea behind both presented methods is to obscure the actual data request by adding “noise”, i.e.,
requests of undesired data blocks. The main differences between the methods are the trust model
and the way the noise is distributed.

Content Privacy
Bloom-Swap Bloom-Swap is a method for privacy-enhanced content discovery similar to double
hashing/reader privacy (Daniel and Tschorsch, 2023). It has the same goal: Find a block within the
network without broadcasting a peer’s interest to the whole network. Their approach relies on replacing
the request of a specific CID, with a noisy request containing the desired CID mixed with all other CIDs
of a provider. In order to reduce the network overhead and to provide plausible deniability to the server,
the list is hashed onto a Bloom filter (Bloom, 1970). Instead of querying the desired block directly, a
node requests a Bloom filter of all available blocks on the server—hence, the name. If the Bloom filter
suggests that the desired block is available, the client can now request this block directly. Bloom filters
are probabilistic in nature, and false positives are possible. In this case, the server will respond that the
block is not available and the node’s privacy is not maintained. However, false negatives are ruled out: If
the Bloom filter returns a negative for the desired block, it is certain that it is not present, and nothing will
be requested. Note that this reveals the amount of blocks stored on the server—information that is private
in traditional Bitswap. To the best of our knowledge, Bloom-Swap is purely theoretical at the moment,
and there are no integration plans.
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Bloom-Swap is an efficient way of obscuring data requests from intermediate nodes. Using Bloom
filters substantially reduces network overhead. However, it does not protect the requesting node’s
privacy from the node that actually provides the content.

Content Erasure
Delegated Content Erasure The previously presented approaches cover the protection goals of
anonymity and plausible deniability. One important privacy objective that can also be found in the
General Data Protection Regulation (GDPR) is the right to be forgotten (GDPR, Article 17). Due to the
decentralized structure of IPFS, it is currently almost impossible for any data controller to satisfy this
right. This issue has also been discussed on the IPFS subreddit22, and answers suggest not to upload
anything you deem private, as there is no way to ensure permanent erasure. As stated earlier, the garbage
collector deletes any unpinned content from a node’s cache. However, this does not mean that the whole
network is traversed and copies of that file are also deleted. For example, user A shares a holiday picture
via IPFS and pins it. A’s peers download it and pin it themselves. If A unpins the photo and does not want
it to be available via IPFS, A would have to tell his peers to unpin it, who in turn have to tell everyone
they shared it with. A file is only forgotten and no longer available on IPFS if no node pins it and all
cached copies are removed by the garbage collector (Politou et al., 2020).

The proposed protocol now tackles this issue by including several cryptographic keys to ensure that
(1) content is deleted from all nodes that currently possess it and (2) only authorized users, i.e., content
owners, are allowed to delete the respective content. The protocol has the following steps:

1. Each user generates a secret symmetric master key mk.

2. If c is published, the user calculates the content-based key k by encrypting the hash of c using mk:
k = Emk(h(c)).

3. The owner calculates the proof of ownership s by encrypting the hash of c using k: s = Ek(h(c)).

4. The user now publishes the tupel (c,s), i.e., the content and its respective proof of ownership.

5. If the user wants to permanently delete c, they send a deletion request using the tupel (h(c),k).

6. A node can verify the ownership by calculating Ek(h(c)) themselves and verifying with the already
published proof of ownership s.

7. Upon successful verification, the content is removed, and the deletion request is forwarded.

Note that no one except for the actual content owner can issue a deletion request if mk is kept secret.
Moreover, publishing k during the deletion request in step 5 should not compromise mk, i.e., an attacker
that knows (the now public) k should not be able to infer mk from it. This protocol was suggested in 2020
but has not yet been implemented in IPFS.

Permanent content erasure is a problem that enjoys less attention than other privacy-related topics;
however, it is an important issue to consider in a decentralized network. The proposed protocol is a
well-structured way to alleviate this issue, but its changes to the IPFS network would presumably be
too severe.

Research Question RQ2a
After having gone through the possible solutions to achieve user privacy within the IPFS network, we can
now answer RQ2a: Which solutions exist to address privacy issues for users? The only viable solution
today is accessing the IPFS network anonymously from the outside, i.e., via an HTTP gateway using
Tor or I2P. Due to the larger user base, Tor is the most usable solution. The apparent downside is the
fact that users are not participating in the network if they just access it via HTTP, which means that
these solutions only offer anonymity for content readers. The most promising solutions target the privacy
goal of plausible deniability. This is likely because adding noise via superfluous content requests is
comparatively easy, and the only difference between the methods is the way how this noise is generated.

22https://www.reddit.com/r/ipfs/comments/9puvpo/
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Provider Privacy
In this section, we address RQ2b: Which solutions exist to address privacy issues for content providers?
To achieve privacy for content providers, also called writers, their anonymity has to be preserved. Outside
of IPFS, this can be achieved using Onion services, also known as hidden services or the “Darknet”.
Using Onion services means that a server can provide content without risking exposure of the IP address.

In IPFS, provider privacy is a more complicated problem than user privacy. Obscuring data requests
via gateways and anonymity networks or providing plausible deniability by flooding content requests
is impossible for content providers. Moreover, projects addressing user or reader privacy explicitly put
provider or writer privacy out of scope (Yiannis Psaras, 2023).

Methods that provide plausible deniability to users can also be argued to improve provider privacy23.
For example, a node operator storing sensitive content might be compelled to log content requests and
leak that information. However, due to the added noise or carefully constructed query vectors, node
operators can no longer tell which content a user actually wants. This provides plausible deniability to the
providers themselves and can incentivize more nodes to provide sensitive content.

To answer RQ2b, no methods or projects exist at the moment that address provider privacy apart
from being a byproduct of user privacy. Concretely, it is currently not possible to anonymize the content
provider’s IP address but limited plausible deniability can be achieved.

DISCUSSION
IPFS is not built with privacy in mind. This becomes apparent by how content is published and accessed,
exposing both the user’s IP and desired content. A malicious actor is able to breach reader privacy and
provider privacy by tracking content requests, allowing for surveillance and censorship.

Reader Privacy
Reader privacy methods focus on (1) anonymity, (2) plausible deniability, (3) content anonymity, and (4)
content deletion.

Efforts to incorporate peer anonymity hide the user’s IP address by accessing IPFS gateways via Tor
or I2P. This does not address the privacy issues directly, as users are not part of the IPFS network when
using a gateway; however, it is the only option for now to fetch data anonymously via IPFS. Projects that
seek to integrate Tor into the IPFS network are still in progress or seemingly abandoned in favor of other
anonymity techniques, which are not yet publicly available.

Methods that provide plausible deniability to users do this by adding “noise” to the data request. By
not only requesting the CID blocks the user actually desires but also adding blocks of other CIDs to the
request, a user can plausibly deny that a specific CID has been requested. The network overhead depends
on the individual privacy needs and is directly proportional. The more blocks a client requests, the less
likely it is to infer the actually desired content. This technique (or any other technique that relies on
requesting more blocks than needed) can not guarantee a diversity of requests. Hence, if out of ten blocks,
only one is popular and nine are never requested, it is still possible for an attacker to make an educated
guess about the actually desired content within the noise. Nevertheless, the privacy increase of these
methods is substantial with regard to the comparably low network overhead and limited changes to the
IPFS protocols.

Content anonymity describes the hiding of desired content from intermediate nodes. The presented
method obscures the peer’s content request by fetching a list of CIDs and checking if the server has the
desired content. A Bloom filter where false positives are possible is used to reduce traffic overhead and
to provide probabilistic privacy that becomes stronger the larger the filter is. The peer’s privacy is only
protected from intermediaries, and thus, the content provider knows of the peer’s request. A combination
with a plausible deniability method could alleviate this problem.

Finally, the protocol presented to erase content does not deal with the immediate threat to a user’s
privacy but still covers an important missing feature of IPFS: the permanent erasure of content. Perma-
nently deleting files is a crucial piece in preserving an individual’s privacy, as it is important to account for
changes in privacy attitude or perceived sensitivity of the published content. Currently, there is no way to
permanently delete content; however, the proposed method could solve this issue elegantly. Incorporating
proof of ownership deters misuse of this deletion method. The changes to the protocol are, however, more
severe, making it questionable whether permanent content erasure will be implemented in IPFS.

23https://www.youtube.com/watch?v=1cd4t9OL0iM
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Provider Privacy
The lack of research into methods regarding provider privacy is not surprising, given the focus on users’
private information retrieval by Protocol Labs. Also, it is difficult to argue for provider privacy given
the implications Onion services had on Tor’s reputation as a network for illegal operations. There is
limited plausible deniability for providers as a byproduct of efforts to increase user privacy, but these
effects are limited. Should provider privacy come into focus, it is still an open question how to achieve it.
Current projects regarding Mixnets could improve provider privacy, but at the moment, there is no public
information available about them.

CONCLUSION
Privacy is an often overlooked concept in many areas, and IPFS is no exception. Due to the protocol’s
design, it seems to be impossible to grant anonymity to all nodes within the network. The solutions
presented in this paper are either ways to circumvent these issues, e.g., by using Tor or I2P from outside
the network, or band-aids, which add noise in order to obfuscate data requests which results in plausible
deniability. Most of the presented solutions are only theoretical so far, and only an HTTP gateway via Tor
or I2P can be used today to load content anonymously from the IPFS network. One solution to providing
plausible deniability—double hashing/reader privacy—is specified but not yet integrated. The need for
additional privacy measures becomes apparent when looking at Protocol Lab’s funding of $750,000 for
solutions related to private information retrieval24. These projects target reader privacy only, so provider
privacy beyond limited plausible deniability remains an open issue in the near future.
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